Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3949/ccjm.73.3.211 | DOI Listing |
PLoS One
January 2025
Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil.
Background And Objective: One of the functions attributed to the auditory efferent system is related to the processing of acoustic stimuli in noise backgrounds. However, clinical implications and the neurophysiological mechanisms of this system are not yet understood, especially on higher regions of the central nervous system. Only a few researchers studied the effects of noise on cortical auditory evoked potentials (CAEP), but the lack of studies in this area and the contradictory results, especially in children, point to the need to investigate different protocols and parameters that could allow the study of top-down activity in humans.
View Article and Find Full Text PDFJ Acoust Soc Am
January 2025
Dyson School of Design Engineering, Imperial College London, SW7 2DB London, United Kingdom.
To date, there is strong evidence indicating that humans with normal hearing can adapt to non-individual head-related transfer functions (HRTFs). However, less attention has been given to studying the generalization of this adaptation to untrained conditions. This study investigated how adaptation to one set of HRTFs can generalize to another set of HRTFs.
View Article and Find Full Text PDFMed Sci Monit
January 2025
Department of Otolaryngology, Jagiellonian University Medical College, Cracow, Poland.
BACKGROUND The Carhart effect consists of a reduction in bone conduction thresholds associated with conductive hearing loss. The aim of this study was to evaluate the role of the Carhart effect in predicting outcomes from surgery in 3 age groups. MATERIAL AND METHODS This study included 532 patients with conductive hearing loss due to otosclerosis, otitis media with effusion, and chronic otitis media who underwent surgery between 2010 and 2020.
View Article and Find Full Text PDFJ Neurosci
January 2025
Oregon Hearing Research Center, Oregon Health and Science University, Portland, OR 97239, USA
In everyday hearing, listeners face the challenge of understanding behaviorally relevant foreground stimuli (speech, vocalizations) in complex backgrounds (environmental, mechanical noise). Prior studies have shown that high-order areas of human auditory cortex (AC) pre-attentively form an enhanced representation of foreground stimuli in the presence of background noise. This enhancement requires identifying and grouping the features that comprise the background so they can be removed from the foreground representation.
View Article and Find Full Text PDFWhile research on auditory attention in complex acoustical environment is a thriving field, experimental studies thus far have typically treated participants as passive listeners. The present study-which combined real-time covert loudness manipulations and online probe detection-investigates for the first time to our knowledge, the effects of acoustic salience on auditory attention during live interactions, using musical improvisation as an experimental paradigm. We found that musicians were more likely to pay attention to a given co-performer when this performer was made sounding louder or softer; that such salient effect was not owing to the local variations introduced by our manipulations but rather likely to be driven by the more long-term context; and that improvisers tended to be more strongly and more stably coupled when a musician was made more salient.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!