New technologies in molecular genetics have dramatically increased the number of targeted gene mutations available to the biomedical research community. Many mutant mouse lines have been generated to provide animal models for human genetic disorders, offering insights into anatomical, neurochemical, and behavioral effects of aberrant gene expression. A variety of assays have been developed to identify and characterize phenotypic changes. In the behavioral domain, our phenotyping strategy involves a comprehensive standardized methodological approach that assesses general health, reflexes, sensory abilities, and motor functions. This assessment is followed by a series of complementary tasks in the specific behavioral domain(s) hypothesized to reveal the function(s) of the gene. Our multitiered approach minimizes intersubject variability by standardizing the experimental history for all animals, improves interlaboratory reliability by providing a clearly defined experimental protocol, and minimizes artifactual interpretations of behavioral data by careful preliminary assessments of basic behaviors, followed by multiple tests within the behavioral domain of interest. Despite meticulous attention to experimental protocol, attention to environmental factors is essential. Differences in noise, light, home cage environment, handling, and diet can dramatically alter behavior. Baseline differences in the behaviors of inbred strains used to generate targeted mutant mouse lines can directly influence the behavioral phenotype of the mutant line. Strategies aimed at minimizing environmental variability and contributions of background genes will enhance the robustness of mouse behavioral phenotyping assays.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/ilar.47.2.124 | DOI Listing |
iScience
January 2025
Institute of Neuroscience and Medicine 10, Research Centre Jülich, 52425 Jülich, Germany.
The / gene, linked to fine motor control in vertebrates, is a potential candidate gene thought to play a prominent role in human language production. It is expressed specifically in a subset of corticothalamic (CT) pyramidal cells (PCs) in layer 6 (L6) of the neocortex. These L6 FOXP2+ PCs project exclusively to the thalamus, with L6a PCs targeting first-order or both first- and higher-order thalamic nuclei, whereas L6b PCs connect only to higher-order nuclei.
View Article and Find Full Text PDFiScience
January 2025
Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, the College of Life Sciences, Northwest University, Xi'an 710069, China.
Bacteriophages (phages) are increasingly viewed as a promising alternative for the treatment of antibiotic-resistant bacterial infections. However, the diversity of host ranges complicates the identification of target phages. Existing computational tools often fail to accurately identify phages across different bacterial species.
View Article and Find Full Text PDFiScience
January 2025
Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
The recognition of conspecifics, animals of the same species, and keeping track of changes in the social environment is essential to all animals. While molecules, circuits, and brain regions that control social behaviors across species are studied in-depth, the neural mechanisms that enable the recognition of social cues are largely obscure. Recent evidence suggests that social cues across sensory modalities converge in a thalamic area conserved across vertebrates.
View Article and Find Full Text PDFOver the last decade, Hippo signaling has emerged as a major tumor-suppressing pathway. Its dysregulation is associated with abnormal expression of and -family genes. Recent works have highlighted the role of YAP1/TEAD activity in several cancers and its potential therapeutic implications.
View Article and Find Full Text PDFiScience
January 2025
Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea.
The heart, with its complex structural and functional characteristics, plays a critical role in sustaining life by pumping blood throughout the entire body to supply nutrients and oxygen. Engineered heart tissues have been introduced to reproduce heart functions to understand the pathophysiological properties of the heart and to test and develop potential therapeutics. Although numerous studies have been conducted in various fields to increase the functionality of heart tissue to be similar to reality, there are still many difficulties in reproducing the blood-pumping function of the heart.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!