Bordetella pertussis, an obligate human pathogen and the agent of whooping cough, is a clonal species, despite the dynamic selection pressures imposed by host immunity and vaccine usage. Because the generation of variation is critical for species evolution, we employed a variety of approaches to examine features of B. pertussis genetic variation. We found a high level of conservation of gene content among 137 B. pertussis strains with different geographical, temporal, and epidemiological associations, using comparative genomic hybridization. The limited number of regions of difference were frequently located adjacent to copies of the insertion element IS481, which is present in high numbers in the B. pertussis chromosome. This repeated sequence appears to provide targets for homologous recombination, resulting in deletion of intervening sequences. Using subtractive hybridization, we searched for previously undetected genes in diverse clinical isolates but did not detect any new genes, indicating that gene acquisition is rare in B. pertussis. In contrast, we found evidence of altered gene order in the several strains that were examined and again found an association of IS481 with sites of rearrangement. Finally, we compared whole-genome expression profiles of different strains and found significant changes in transcript abundance, even in the same strain after as few as 12 laboratory passages. This combination of approaches provides a detailed picture of a pathogenic species with little gene loss or gain but with the capacity to generate variation by rearranging its chromosome and altering gene expression. These findings have broad implications for host adaptation by microbial pathogens.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1428402PMC
http://dx.doi.org/10.1128/JB.188.7.2375-2382.2006DOI Listing

Publication Analysis

Top Keywords

gene order
8
bordetella pertussis
8
gene content
8
gene
7
pertussis
6
order expression
4
expression differences
4
differences bordetella
4
pertussis despite
4
despite limited
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!