The in vitro antiplasmodial activity of 117 aqueous, methanol and dichloromethane extracts derived from different parts of 28 indigenous wild plant species was studied. These plants are commonly used in Cambodian traditional medicine. The plant extracts were tested for in vitro activity against a chloroquine resistant Plasmodium falciparum strain (W2). Nine extracts were moderately active with IC(50) values ranging between 5 and 10 microg/ml, 17 extracts were active with IC(50) values ranging between 1 and 5 microg/ml. These 26 extracts derived from eight plants belong to six families. The most active extracts were dichloromethane and came from Stephania rotunda and Brucea javanica with IC(50) values of 1 microg/ml and a selectivity index > or = 25. It is interesting to note that some aqueous extracts were as active as dichloromethane extracts especially aqueous extracts of Stephania rotunda, Brucea javanica, Phyllanthus urinaria and Eurycoma longifolia with IC(50) values of < or = 4 microg/ml. These results are in agreement with statements of healers on traditional uses of these plants for the treatment of malaria and/or fever. In this study, we report the antiplasmodial potential activity of eight plant species from Cambodia. Among them four are tested for the first time.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jep.2006.01.028 | DOI Listing |
Pharmaceutics
January 2025
Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark.
: The proton-coupled amino acid transporter (PAT1) is an intestinal absorptive solute carrier responsible for the oral bioavailability of some GABA-mimetic drug substances such as vigabatrin and gaboxadol. In the present work, we investigate if non-steroidal anti-inflammatory drug substances (NSAIDs) interact with substrate transport via human (h)PAT1. : The transport of substrates via hPAT1 was investigated in Caco-2 cells using radiolabeled substrate uptake and in oocytes injected with , measuring induced currents using the two-electrode voltage clamp technique.
View Article and Find Full Text PDFPharmaceutics
December 2024
Department of Molecular Medicine, School of Medicine, University of Colima, Colima 28040, Mexico.
: , or star fruit, is a shrub known for its medicinal properties, especially due to bioactive metabolites identified in its roots and fruit with anti-cancer activity. However, the biological effects of its leaves remain unexplored. This study aimed to assess the effects of ethanolic extract from leaves on triple-negative breast cancer (TNBC), an aggressive subtype lacking specific therapy.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Instituto de Biotecnología, Facultad de Ingeniería, Universidad Nacional de San Juan, Av. Libertador General San Martín 1109 (O), San Juan CP5400, Argentina.
, a recently described endemic species from southern Peru, belongs to the Amaryllidaceae family and is known for its diversity of alkaloids. Amaryllidoideae have been studied for their diverse biological activities, particularly for their properties in treating neurodegenerative diseases. This work examines the alkaloidal profile using GC-MS and UPLC-MS/MS of alkaloid-enriched extracts obtained from the leaves and bulbs of and their inhibitory activity against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) enzymes.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Gral. Ramón Corona No 2514, Colonia Nuevo México, Zapopan 45121, Mexico.
In this work, extracts from the pulp, peel, and seed of were obtained via lyophilization and oven drying. Bromatological analyses were performed to investigate variabilities in the nutritional content of fruits after nine post-harvest days. The phytochemical content of fruits was assessed by gas chromatography flame ionization detector (GC-FID), and their biological performance was studied using antibacterial and antioxidant assays (DPPH and ABTS) and toxicity models.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
Endophytic fungi possess a unique ability to produce abundant secondary metabolites, which play an active role in the growth and development of host plants. In this study, chemical investigations on the endophytic fungus TE-739D derived from the cultivated tobacco ( L.) afforded two new polyketide derivatives, namely japoniones A () and B (), as well as four previously reported compounds -.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!