Glutamate N-methyl-d-aspartate (NMDA) receptors and the enzyme neuronal nitric oxide synthase (nNOS) are significantly expressed in the midbrain dorsolateral periaqueductal gray (dlPAG). Local injections of either NMDA-receptor agonists or nitric oxide (NO) donors induce flight reactions in rats. Since the activation of NMDA receptors in the brain increases the synthesis of NO, the present work was conducted to test the hypothesis that the flight reaction induced by intra-dlPAG administration of NMDA would be mediated by endogenous NO. Male Wistar rats with cannulas aimed at the dlPAG received intracerebral injections of l-NAME (NOS inhibitor, 100-200 nmol), carboxy-PTIO (NO scavenger, 1-3 nmol) or ODQ (guanylate cyclase inhibitor, 1-3 nmol). Saline or NMDA (0.1 nmol) was injected 10 min later and the behavioral changes were recorded for 2 min in the injection box. Intra-dlPAG injection of NMDA produced flight reactions characterized by crossings and jumps. Contrary to the initial hypothesis, these effects were not prevented by pretreatment with l-NAME, carboxy-PTIO or ODQ. Although the NO pathway may mediate some effects induced by NMDA receptor activation in the brain, the present results suggest that the administration of NMDA into the dlPAG induces flight reactions by mechanisms that are independent of endogenous NO.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pbb.2006.02.010DOI Listing

Publication Analysis

Top Keywords

flight reactions
16
nitric oxide
12
glutamate n-methyl-d-aspartate
8
dorsolateral periaqueductal
8
periaqueductal gray
8
nmda receptors
8
administration nmda
8
1-3 nmol
8
nmda
7
flight
5

Similar Publications

Plants will form the basis of artificial ecosystems in space exploration and the creation of bases on other planets. Astrophysical factors, such as ionizing radiation (IR), magnetic fields (MF) and gravity, can significantly affect the growth and development of plants beyond Earth. However, to date, the ways in which these factors influence plants remain largely unexplored.

View Article and Find Full Text PDF

Characterization of main degradation products from dendrobine under stress conditions by multistage cleavage of UPLC-ESI-IT-TOF.

J Pharm Biomed Anal

January 2025

Department of Pharmaceutical Analysis, School of Pharmacy, Guizhou Medical University, Gui'an New District, Guizhou 561113, PR China. Electronic address:

Dendrobine is a sesquiterpene alkaloid primarily used in the treatment of inflammatory diseases, immune system disorders, and conditions related to oxidative stress. To understand the possible degradation pathways of dendrobine for its quality control, we conducted an in-depth investigation of its degradation products using forced degradation methods. The separation of dendrobine and its degradation products was achieved on a Shim-pack XR-ODS III (75 mm × 2 mm, 1.

View Article and Find Full Text PDF

Our study focused on the potential mechanism of microRNA-490-3p (miR-490-3p) on learning/memory disability of rats resulting from sevoflurane (Sev). The rat model of cognitive dysfunction was established by infection with miR-490-3p mimic and Sev-exposure. Morris water maze and open field test assay were used for the assessment of cognitive deficits.

View Article and Find Full Text PDF

Colorectal cancer (CRC) ranks third globally in cancer incidence and mortality, posing a significant human concern. Recent advancements in immunotherapy are noteworthy. This study explores immune modulation for CRC treatment.

View Article and Find Full Text PDF

Domain antibodies such as monobodies provide an attractive immunoglobin fold for evolving high-affinity protein binders targeting the intracellular proteins implicated in cell signalling. However, it remains a challenge to endow cell permeability to these small and versatile protein binders. Here, we report a streamlined approach combining orthogonal crosslinking afforded by a genetically encoded β-lactam-lysine (BeLaK) and genetic supercharging to generate cell-penetrating monobodies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!