Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The opioid receptors, mu, delta and kappa, conduct the major pharmacological effects of opioid drugs, and exhibit intriguing functional relationships and interactions in the CNS. Previously established hypotheses regarding the mechanisms underlying these phenomena specify theoretical patterns of relative cellular localisation for the different receptor types. In this study, we have used double-label immunohistochemistry to compare the cellular distributions of delta and kappa receptors with those of mu receptors in the rat CNS. Regions of established significance in opioid addiction were examined. Extensive mu/delta co-localisation was observed in neuron-like cells in several regions. mu and kappa receptors were also often co-localised in neuron-like cell bodies in several regions. However, intense kappa immunoreactivity (ir) also appeared in a separate, morphologically distinct population of cells that did not express mu receptors. These small, ovoid cells were often closely apposed against the larger, mu-ir cell bodies. Such cellular appositions were seen in several regions, but were particularly common in the medial thalamus, the periaqueductal grey and brainstem regions. These findings support proposals that functional similarities, synergy and cooperativity between mu and delta receptors arise from widespread co-expression by cells and intracellular molecular interactions. Although co-expression of mu and kappa receptors was also detected, the appearance of a separate population of kappa-expressing cells supports proposals that the contrasting and functionally antagonistic properties of mu and kappa receptors are due to expression in physiologically distinct cell types. Greater understanding of opioid receptor interaction mechanisms may provide possibilities for therapeutic intervention in opioid addiction and other conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.lfs.2006.02.021 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!