There are a number of reasons for believing that nitric oxide participates in motor control in the striatum. Therefore, effects of neuronal nitric oxide synthase inhibitor 7-nitroindazole (7-NI) were studied on the reserpine model of Parkinson's disease in Swiss and C57BL/6 mice using the open-field test. Mice received reserpine (1 mg/kg administered intraperitoneally). A significant hypolocomotion was observed 24 h and 48 h after reserpine injection. The treatment with 7-nitroindazole (25 mg/kg, administered intraperitoneally, 30 min after reserpine) attenuated reserpine-induced hypolocomotion 24 h and 48 h after the treatment in Swiss mice, but not completely in C57BL/6 mice. These results suggest that nitric oxide functions as an intercellular messenger in motor circuits in the brain. Moreover, our data suggests that the comparison of such mouse strains may provide information on genetic basis for strain differences in different sensitivity to these drugs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejphar.2006.02.004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!