The conformational preferences of a cyclic osmoregulated periplasmic glucan of Ralstonia solanacearum (OPGR), which is composed of 13 glucose units and linked entirely via beta-(1-->2) linkages excluding one alpha-(1-->6) linkage, were characterized by molecular dynamics simulations. Of the three force fields modified for carbohydrates that were applied to select a suitable one for the cyclic glucan, the carbohydrate solution force field (CSFF) was found to most accurately simulate the cyclic molecule. To determine the conformational characteristics of OPGR, we investigated the glycosidic dihedral angle distribution, fluctuation, and the potential energy of the glucan and constructed hypothetical cyclic (CYS13) and linear (LINEAR) glucans. All beta-(1-->2)-glycosidic linkages of OPGR adopted stable conformations, and the dihedral angles fluctuated in this energy region with some flexibility. However, despite the inherent flexibility of the alpha-(1-->6) linkage, the dihedral angles have no transition and are more rigid than that in a linear glucan. CYS13, which consists of only beta-(1-->2) linkages, is somewhat less flexible than other glycans, and one of its linkages adopts a higher energy conformation. In addition, the root-mean-square fluctuation of this linkage is lower than that of other linkages. Furthermore, the potential energy of glucans increases in the order of LINEAR, OPGR, and CYS13. These results provide evidence of the existence of conformational constraints in the cyclic glucan. The alpha-(1-->6)-glycosidic linkage can relieve this constraint more efficiently than the beta-(1-->2) linkage. The conformation of OPGR can reconcile the tendency for individual glycosidic bonds to adopt energetically favorable conformations with the requirement for closure of the macrocyclic ring by losing the inherent flexibility of the alpha-(1-->6)-glycosidic linkage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carres.2006.02.025 | DOI Listing |
Foods
November 2024
College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China.
Single enzymatic modifications are limited to starch. Complex modification with synergistic amylases will improve starch properties more significantly. In this study, maize starch was compound modified by β-amylase and α-glucosidase.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Chemistry, Yildiz Technical University, 34220 Davutpasa, Istanbul, Turkey.
A commercially important pullulanase enzyme that hydrolyzes α-1,6 glycosidic linkages in pullulan was immobilized as pullulanase/Cu(PO) hybrid nanoflower. Free and immobilized enzymes both showed the highest activity at 25 °C. The optimum pH of the free enzyme was 4.
View Article and Find Full Text PDFAntioxidants (Basel)
October 2024
Department of Biochemistry and Molecular Biology, Qiqihar Medical University, Qiqihar 161000, China.
Lactic acid bacteria exopolysaccharide (EPS) is a large molecular polymer produced during the growth and metabolism of lactic acid bacteria. EPS has multiple biological functions and is widely used in fields such as food and medicine. However, the low yield and high production cost of EPS derived from lactic acid bacteria limit its widespread application.
View Article and Find Full Text PDFCarbohydr Polym
January 2025
Institute of Agro-Product Processing, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China. Electronic address:
Stirred soy yogurt as a dairy alternative is widely accepted among consumers, but its poor stability has been an urgent problem. We found that Leuconostoc mesenteroides Lm10 produced dextran reduced water mobility and improved the water holding capacity of stirred soy yogurt, especially with over 4 % sucrose added which could completely prevent whey separation. With the increase of dextran content, the particle size of stirred soy yogurt was significantly decreased, accompanied by the improvement of viscoelastic behaviors and resistance to deformation.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Bio-organic Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
An exopolysaccharide (EPS)-producing bacterial strain was isolated from fermented soy milk and identified as Weissella cibaria strain Fiplydextran through morphological, biochemical and 16S rDNA sequence analysis. Here, we report the optimisation of cultural conditions for the organism to achieve maximum EPS production, along with its molecular characterisation, functional properties, and prebiotic potential. The exceptionally high EPS yield (0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!