Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Simultaneous acquisition of EEG and fMRI data enables the investigation of the hemodynamic correlates of interictal epileptiform discharges (IEDs) during the resting state in patients with epilepsy. This paper addresses two issues: (1) the semi-automation of IED classification in statistical modelling for fMRI analysis and (2) the improvement of IED detection to increase experimental fMRI efficiency. For patients with multiple IED generators, sensitivity to IED-correlated BOLD signal changes can be improved when the fMRI analysis model distinguishes between IEDs of differing morphology and field. In an attempt to reduce the subjectivity of visual IED classification, we implemented a semi-automated system, based on the spatio-temporal clustering of EEG events. We illustrate the technique's usefulness using EEG-fMRI data from a subject with focal epilepsy in whom 202 IEDs were visually identified and then clustered semi-automatically into four clusters. Each cluster of IEDs was modelled separately for the purpose of fMRI analysis. This revealed IED-correlated BOLD activations in distinct regions corresponding to three different IED categories. In a second step, Signal Space Projection (SSP) was used to project the scalp EEG onto the dipoles corresponding to each IED cluster. This resulted in 123 previously unrecognised IEDs, the inclusion of which, in the General Linear Model (GLM), increased the experimental efficiency as reflected by significant BOLD activations. We have also shown that the detection of extra IEDs is robust in the face of fluctuations in the set of visually detected IEDs. We conclude that automated IED classification can result in more objective fMRI models of IEDs and significantly increased sensitivity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroimage.2006.01.040 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!