Melittin analogs with high lytic activity at endosomal pH enhance transfection with purified targeted PEI polyplexes.

J Control Release

Pharmaceutical Biology-Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität, Butenandtstr. 5-13, D-81377 Munich, Germany.

Published: May 2006

Melittin-polyethylenimine (PEI) conjugates have been shown to enhance gene transfer efficiency of polyplexes due to their membrane-destabilizing properties. Inherent lytic activity at neutral pH however also provokes high cytotoxicity due to plasma membrane damage. In order to shift the lytic activity towards the endosomal membrane, several melittin analogs were designed. Acidic modification of melittin by replacing neutral glutamines (Gln-25 and Gln-26) with glutamic acid residues greatly improved the lytic activity of C-terminally linked PEI conjugates at the endosomal pH of 5. This activity correlated well with the gene transfer efficiency of polyplexes in four different cell lines. Melittin-PEI conjugates with high lytic activities at endosomal pH were then incorporated into EGF receptor-targeted and polyethylene glycol-shielded polyplexes. The resulting particles had virus-like dimension (150 nm) with a neutral surface charge and were subsequently purified by size exclusion chromatography to remove unbound toxic PEI conjugate. These purified polyplexes mediated EGF-receptor-specific gene transfer with up to 70-fold higher activity compared to the corresponding PEI polyplexes without melittin.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconrel.2006.02.002DOI Listing

Publication Analysis

Top Keywords

lytic activity
16
gene transfer
12
melittin analogs
8
high lytic
8
activity endosomal
8
pei polyplexes
8
pei conjugates
8
transfer efficiency
8
efficiency polyplexes
8
activity
6

Similar Publications

Primary bone lymphomas are unusual, and accounts for 2% among all lymphomas. Primary sacral lymphomas are still rarer with only 12 cases reported till date. They predominantly affect elderly males, showing occasional spinal epidural space involvement.

View Article and Find Full Text PDF

Despite major efforts toward its eradication, cholera remains a major health threat and economic burden in many low- and middle-income countries. Between outbreaks, the bacterium responsible for the disease, , survives in aquatic environmental reservoirs, where it commonly forms biofilms, for example, on zooplankton. -acetyl glucosamine-binding protein A (GbpA) is an adhesin that binds to the chitinaceous surface of zooplankton and breaks its dense crystalline packing thanks to its lytic polysaccharide monooxygenase (LPMO) activity, which provides with nutrients.

View Article and Find Full Text PDF

The emergence of antibiotic-resistant bacteria has attracted interest in the field of endolysins. Here, we analyzed the diversity of endolysins and identified a new endolysin, Ply2741, that exhibited broad-spectrum bactericidal activity. Our results demonstrated that Ply2741 could effectively eradicate multidrug-resistant gram-positive pathogens and .

View Article and Find Full Text PDF

Bacteriophages RCF and 1-6bf can control the growth of avian pathogenic Escherichia coli.

Poult Sci

January 2025

Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan. Electronic address:

Escherichia coli (E. coli) is a widely distributed pathogenic bacterium that poses a substantial hazard to poultry, leading to the development of a severe systemic disease known as colibacillosis. Colibacillosis is involved in multimillion-dollar losses to the poultry industry each year worldwide.

View Article and Find Full Text PDF

Modulation of Cell Cycle Kinases by Kaposi's Sarcoma-Associated Herpesvirus.

J Med Virol

January 2025

Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.

The cell cycle is governed by kinase activity that coordinates progression through a series of regulatory checkpoints, preventing the division of damaged cells. The Kaposi's sarcoma-associated herpesvirus (KSHV) encodes multiple genes that modulate or co-opt the activity of these kinases, shaping the cellular environment to promote viral persistence. By advancing the cell cycle, KSHV facilitates latent replication and subsequent transmission of viral genomes to daughter cells, while also contributing to the establishment of multiple cancer types.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!