Latex diffusion at high volume fractions studied by fluorescence microscopy.

J Colloid Interface Sci

Department of Physical Chemistry, Karlstad University, SE-651 88 Karlstad, Sweden.

Published: June 2006

The behavior of fluorescent latex probes (radii 0.05, 0.1, and 0.5 mum) in latex host particle suspensions was investigated by fluorescence microscopy with image analysis. The volume fraction of the host latex was varied between 0 and 0.50. A careful statistical analysis was performed to examine the accuracy of the fluorescence microscopy method, from which the direct observation of the Brownian motion gives the diffusion coefficient. The method was found to meet all statistical requirements. From rheological measurements, the maximum volume fraction and the intrinsic viscosity can be obtained. The Krieger-Dougherty equation can be used for the prediction of sample viscosities. The predicted viscosities were used to obtain the theoretical diffusion coefficients with the Stoke-Einstein equation. When comparing the theoretical diffusion coefficients with the experimental ones, it turned out that all models tested yielded acceptable predictions of the diffusion coefficients.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2005.12.030DOI Listing

Publication Analysis

Top Keywords

fluorescence microscopy
12
diffusion coefficients
12
volume fraction
8
theoretical diffusion
8
latex
4
latex diffusion
4
diffusion high
4
high volume
4
volume fractions
4
fractions studied
4

Similar Publications

Multiphoton and Harmonic Imaging of Microarchitected Materials.

ACS Appl Mater Interfaces

January 2025

Laser Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, California 94720, United States.

Microadditive manufacturing has revolutionized the production of complex, nano- to microscale components across various fields. This work investigates two-photon (2P) and three-photon (3P) fluorescence imaging, as well as third-harmonic generation (THG) microscopy, to examine periodic microarchitected lattice structures fabricated using multiphoton lithography (MPL). By immersing the structures in refractive index matching fluids, we demonstrate high-fidelity 3D reconstructions of both fluorescent structures using 2P and 3P microscopy as well as low-fluorescence structures using THG microscopy.

View Article and Find Full Text PDF

Variance in the properties of optical mesoscopic probes is often a limiting factor in applications. In the thermodynamic limit, the smaller the probe, the larger the relative variance. However, specific viral protein cages can assemble efficiently outside the bounds of statistical fluctuations at equilibrium through a process that is characterized by intrinsic quality-control and self-limiting capabilities.

View Article and Find Full Text PDF

Benzene degradation under anoxic conditions was first reported more than 25 years ago; however, the activation mechanism in the absence of oxygen remains elusive. Progress has been hindered by the difficulty in cultivating anaerobic benzene-degrading enrichment cultures. Our laboratory has sustained a methanogenic enrichment culture harboring ORM2, a benzene fermenter distinct from any known genus but related to other known or predicted benzene degraders.

View Article and Find Full Text PDF

The impact of animal-based food production on climate change drives the development of plant-based alternatives. We demonstrate the use of colloidal thermogelation on a real nanoemulsion system to create structured gels that could be of interest for thermo-mechanical processing of next-generation plant-based food applications. We use a commercial pea protein isolate (PPI) without further purification to stabilize a 20 vol% peanut oil-in-water nanoemulsion at pH = 7 by high-pressure homogenization (HPH) and demonstrate the temperature induced gelation behavior of the nanoemulsion as a function of the HPH processing parameters.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) stands as the predominant form of dementia worldwide. The pathogenesis of AD encompasses elevated brain levels of amyloid-β oligomers (AβOs), recognized as central neurotoxins linked to AD. The accumulation of AβOs is neurotoxic, resulting in detrimental effects such as synapse loss, mitochondrial dysfunction, and impairment of proteostasis mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!