Transposon-based technologies are important genetic tools for global genome analysis and, as discussed in the present paper, in detailed studies of protein structure-function. Various different transposition systems can be used in these studies but this paper uses Tn5-related systems as a model. In particular, the following four different technologies are described in this paper: (i) using transposition to generate nested deletion families, (ii) using transposons to generate functional protein fusions to reporter functions, (iii) mapping protein secondary structures through the generation and analysis of in-frame linker insertions and (iv) using sequential transposition events to generate random gene fusions. The success of these forward genetic technologies requires that the transposition system be efficient and manifest near-random target sequence selection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1042/BST20060320 | DOI Listing |
Front Physiol
January 2025
Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.
A transport protein's turnover rate (TOR) is the maximum rate of substrate translocation under saturating conditions. This parameter represents the number of transporting events per transporter molecule (assuming a single transport site) per second (s). From this standpoint, a transporter's TOR is similar to an enzyme's catalytic constant.
View Article and Find Full Text PDFFEBS J
January 2025
'The Protein Factory 2.0', Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, Varese, Italy.
The sequestration of carbon dioxide using carbonic anhydrase (CA) is one of the most effective methods for mitigating global warming. The burning of fossil fuels releases large quantities of flue gas; because of its high temperature and of the alkaline conditions required for CaCO precipitation in the mineralization process, thermo-alkali-stable CAs are needed. In this context, Manyumwa et al.
View Article and Find Full Text PDFBiochemistry (Mosc)
December 2024
Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia.
The current work presents comparative assessment of affinity of the designed DNA aptamers for extracellular domain of the human epidermal growth factor receptor (EGFR*). The affinity data of the 20 previously published aptamers are summarized. Diversity of the aptamer selection methods and techniques requires unification of the comparison algorithms, which is also necessary for designing aptamers used in the post-selection fitting to the target EGFR* protein.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Integrative Agriculture Department, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain 15551, United Arab Emirates.
Fruits and vegetables (F&Vs) are essential in daily life and industrial production. These perishable produces are vulnerable to various biotic and abiotic stresses during their growth, postharvest storage, and handling. As the fruit detaches from the plant, these stresses become more intense.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Departamento de Micro y Nanotecnologías, Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Cto. Exterior S/N, C.U., Coyoacán, Ciudad de México C.P. 04510, Mexico.
Thermus thermophilus HB27 laccase (Tth-Lac) is a thermostable enzyme that contains a β-hairpin (Ala292-Gln307) covering the substrate entrance. We analyzed the role of this β-hairpin in the enzymatic activity of Tth-Lac through three β-hairpin mutants: two variants without the β-hairpin (C1Tth-Lac and C2Tth-Lac) and one with a partially modified β-hairpin (P1Tth-Lac). Enzymatic activity was assayed with different substrates with and without copper.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!