3,3'-Diindolylmethane (DIM) is a major in vivo product of the cancer preventative agent indole-3-carbinol that is found in vegetables of the genus Brassica. Here, we report on the metabolic fate of radiolabeled DIM in MCF-7 cells. DIM was slowly metabolized to several sulfate conjugates of oxidized DIM products that were primarily detected in the medium. The radioactivity detected in cells was predominantly unmodified DIM (81-93%) at all time intervals up to 72 h treatment. Co-treatment of MCF-7 cells with quercetin slowed the rate that oxidized DIM products accumulated in the medium, while indole[3,2-b]carbazole (ICZ) co-treatment accelerated their production. ICZ is an inducer of P450 1A2, while quercetin is a specific inhibitor of this isoform, suggesting that P450 1A2 is primarily responsible for the oxidation of DIM, probably through 2,3-epoxidation similar to 3-methylindole. Sulfate conjugates of oxidized DIM metabolites were cleaved by sulfatase digestion and identified by LC/MS as 3-(1H-indole-3-ylmethyl)-2-oxindole (2-ox-DIM), bis(1H-indol-3-yl)methanol (3-methylenehydroxy-DIM), 3-[hydroxy-(1H-indol-3-yl)-methyl]-1,3-dihydro-2-oxindole (3-methylenehydroxy-2-ox-DIM), and 3-hydroxy-3-(1H-indole-3-ylmethyl)-2-oxindole (3-hydroxy-2-ox-DIM). Derivatives of 2-ox-DIM represented greater than 30% of the radioactivity in the sulfatase-digested medium. Although oxindole formation was the primary metabolic pathway in MCF-7 cells, synthetic 2-ox-DIM was inactive in a 4-ERE-luciferase reporter assay and, therefore, probably not responsible for the estrogenic activity previously observed for DIM. Unmodified DIM rapidly accumulated in the nuclear membranes representing approximately 35-40% of the radioactivity after 0.5-2 h treatment. Uptake of radiolabeled DIM appeared to be a passive partitioning into the nuclear membranes and was not dependent upon the cell cytosol. The nuclear uptake of DIM was not saturable and could not be blocked by pretreatment with unlabeled DIM (100 microM). Further, treatments in serum-free medium increased the uptake of radiolabeled DIM by the MCF-7 cells. These findings show that the uptake of DIM by membranes significantly increases its localized concentration, which may contribute to its biological activities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/tx050325z | DOI Listing |
J Tradit Complement Med
November 2024
Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Lucknow, 226003, India.
Background And Aim: L. has been used medicinally and traditionally since antiquity. This study sought to examine the ethanolic extract (ASEE) in inducing apoptosis in human triple-negative breast cancer (TNBC) MDA-MB-231 cells and the molecular interactions of the identified components with cell death markers using method.
View Article and Find Full Text PDFRSC Med Chem
January 2025
Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University Mansoura 35516 Egypt
Novel thiazole analogs 3a, 3b, 4, 5, 6a-g, 8a, 8b, 9a-c, 10a-d and 11 were designed and synthesized as molecular mimetics of sunitinib. antitumor activity of the obtained compounds was investigated against HepG2, HCT-116, MCF-7, HeP-2 and HeLa cancer cell lines. The obtained data showed that compounds 3b and 10c are the most potent members toward HepG2, HCT-116, MCF-7 and HeLa cells.
View Article and Find Full Text PDFWorld J Oncol
February 2025
Comprehensive Breast Health Center, Department of Surgery, Taipei Veterans General Hospital, Taipei 112201, Taiwan.
Background: While mutations in the gene play important roles in human breast carcinogenesis, gene alterations are recognized as actionable mutations for clinical cancer treatment. We aimed to elucidate the role of PIK3R1 in cell proliferation on breast carcinoma and to correlate the PIK3R1 expression with patients' outcome using human tumor tissue arrays.
Methods: Using human BT-474 (estrogen receptor (ER)+/human epidermal growth factor receptor 2 (HER2)-high) breast carcinoma cell line as model, the role of PIK3R1 in cell proliferation was elucidated by knock-down of the gene (ΔPIK3R1) in this cell line.
Biochem Res Int
January 2025
Department of Medical Biochemistry, Faculty of Medicine, Ege University, İzmir, Türkiye.
Recently, it has been shown that protein phosphatase 2A (PP2A) dysfunction was common in many cancer types and was mediated by various inactivation mechanisms. Although many research studies observed antitumor effect of propolis extracts in various types of cancer, the mechanism of effect are still obscure. In this study, we investigated the effect of propolis on PPP2R1A expression and its relationship with apoptosis in the SW-620 (colorectal cancer), DU-145 and PC-3 (prostate cancer), and MCF-7 (breast cancer) cell lines, with WI-38 (healthy fibroblast) cells serving as the control.
View Article and Find Full Text PDFSci Rep
January 2025
The Second Department of Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China.
Although tamoxifen is commonly utilized as adjuvant therapy for Estrogen Receptor alpha (ERα)-positive breast cancer patients, approximately 30-50% of individuals treated with tamoxifen experience relapse. Therefore, it is essential to investigate additional factors besides ERα that influence the estrogen response. In this study, cross-analysis of databases were performed, and the results revealed a significant association between LINC00626 and ERα signaling as well as increased expression levels of this gene in tamoxifen-resistant cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!