Nucleosome depletion in the promoters has been indicated in yeasts, suggesting that nucleosome depletion in promoter might be a fundamental feature of eukaryotic transcriptional regulation. We compared the relationship between histone H3 acetylation at lysine 9 (K9) in promoter, gene expression level, and nucleosome density in the vicinity of the transcription start site (TSS), in HepG2 cells (human hepatocellular liver carcinoma cells). We found that the density of nucleosome is relatively low in the close vicinity of TSS flanked by H3 K9 significantly acetylated promoter, compared with that for genes without marked H3 K9 acetylation in promoter, regardless of their transcriptional activation status. Our results imply that the relative nucleosome depletion in the vicinity of TSS is not necessarily associated with active transcription, but with histone H3 K9 acetylation in promoter.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10577-006-1036-7DOI Listing

Publication Analysis

Top Keywords

nucleosome depletion
12
lysine promoter
8
nucleosome density
8
density vicinity
8
vicinity transcription
8
transcription start
8
start site
8
histone acetylation
8
vicinity tss
8
acetylation promoter
8

Similar Publications

Nucleosome repositioning is essential for establishing nucleosome-depleted regions (NDRs) to initiate transcription. This process has been extensively studied using structural, biochemical, and single-molecule approaches, which require homogenously positioned nucleosomes. This is often achieved using the Widom 601 sequence, a highly efficient nucleosome positioning element (NPE) selected for its unusually strong binding to the H3-H4 histone tetramer.

View Article and Find Full Text PDF

Understanding chromatin organization requires integrating measurements of genome connectivity and physical structure. It is well established that cohesin is essential for TAD and loop connectivity features in Hi-C, but the corresponding change in physical structure has not been studied using electron microscopy. Pairing chromatin scanning transmission electron tomography with multiomic analysis and single-molecule localization microscopy, we study the role of cohesin in regulating the conformationally defined chromatin nanoscopic packing domains.

View Article and Find Full Text PDF

MYB represses ζ-globin expression through upregulating ETO2.

Acta Biochim Biophys Sin (Shanghai)

January 2025

Innovation Center for Diagnostics and Treatment of Thalassemia, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.

Reactivating the embryonic ζ-globin gene represents a potential therapeutic approach to ameliorate the severe clinical phenotype of α-thalassemia and sickle cell disease. The transcription factor MYB has been extensively proven to be a master regulator of the γ-globin gene, but its role in the regulation of ζ-globin remains incompletely understood. Here, we report a mechanistic study on the derepression of ζ-globin both and .

View Article and Find Full Text PDF

Cohesin positions the epigenetic reader Phf2 within the genome.

EMBO J

January 2025

Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria.

Article Synopsis
  • Genomic DNA is organized into chromatin with the help of histones and cohesin, but their cooperation in genome regulation is not well understood.
  • Researchers identified Phf2, a histone demethylase, as a protein that interacts with cohesin, indicating a potential role in regulating transcription at active gene sites.
  • The studies show that Phf2 helps recruit cohesin to transcription start sites and affects the size of chromatin compartments, highlighting an important relationship between histone modification and genome architecture in eukaryotic cells.
View Article and Find Full Text PDF

Abo1 ATPase facilitates the dissociation of FACT from chromatin.

Nucleic Acids Res

December 2024

Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), KI for the BioCentury, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea.

The histone chaperone FAcilitates Chromatin Transcription (FACT) is a heterodimeric complex consisting of Spt16 and Pob3, crucial for preserving nucleosome integrity during transcription and DNA replication. Loss of FACT leads to cryptic transcription and heterochromatin defects. FACT was shown to interact with Abo1, an AAA + family histone chaperone involved in nucleosome dynamics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!