Effect of CYP2D6 genetic polymorphism on the population pharmacokinetics of tipifarnib.

Cancer Chemother Pharmacol

Clinical Pharmacology and Experimental Medicine Division, Johnson & Johnson Pharmaceutical Research & Development, a Division of Janssen Pharmaceutica NV. Turnhoutseweg 30, 2340, Beerse, Belgium.

Published: November 2006

Objective: Evaluate the effect of CYP2D6 genotype on the pharmacokinetics of tipifarnib.

Methods: A total of 268 subjects included in six clinical trials were treated orally with tablet formulation of tipifarnib, as a single dose or as multiple b.i.d. doses (range 50-600 mg), and/or intravenously following 1, 2, and 24 h infusions. A total of 2,575 tipifarnib concentrations were fitted to an open three-compartment linear disposition model with sequential zero-order input into the depot compartment, followed by a first-order absorption process, and lag time, using NONMEM V. The effect of CYP2D6 genotype was explored as a covariate for tipifarnib systemic clearance and absolute bioavailability. Likelihood ratio test was used to compare these parameters in homozygous extensive metabolizers (EM) (N=152), heterozygous EM (N=97), or poor metabolizers (PM) (N=19). Computer simulations were undertaken to explore the CYP2D6 genotype effect on the tipifarnib pharmacokinetics.

Results: The ratio of tipifarnib systemic clearance for the heterozygous EM and the PM subjects, relative to the homozygous EM group, were 0.95 (95%CI 0.87-1.03) and 0.96 (95%CI 0.82-1.11), respectively (chi2=2.376, df=2, P=0.305). The ratio of tipifarnib absolute bioavailability for the heterozygous EM and the PM, relative to the homozygous EM, were 1.06 (95%CI 0.83-1.30) and 0.95 (95%CI 0.55-1.34), respectively (chi2=1.398, df=2, P=0.497).

Conclusions: These results indicate that CYP2D6 genetic polymorphism does not appreciably influence the pharmacokinetics of tipifarnib. Hence, concomitant administration of potent CYP2D6 inhibitors is anticipated to have little or no significant impact on the systemic exposure to tipifarnib.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00280-006-0215-8DOI Listing

Publication Analysis

Top Keywords

cyp2d6 genotype
12
tipifarnib
9
cyp2d6 genetic
8
genetic polymorphism
8
pharmacokinetics tipifarnib
8
tipifarnib systemic
8
systemic clearance
8
absolute bioavailability
8
ratio tipifarnib
8
relative homozygous
8

Similar Publications

Aripiprazole (ARI) is an atypical antipsychotic which is a substrate of P-glycoprotein (P-gp), a transmembrane glycoprotein that plays a crucial role in eliminating potentially harmful compounds from the organism. ARI once-monthly (AOM) is a long-acting injectable form which improves treatment compliance. Genetic polymorphisms in ABCB1 may lead to changes in P-gp function, leading to individual differences in drug disposition.

View Article and Find Full Text PDF

The most frequent type of leukemia in Africa is chronic myeloid leukemia (CML). The genetic background of the rarer Philadelphia chromosome (Ph) Ph-ve (BCR-ABL-ve) subform of CML is largely unknown in African patients. Therefore, in this study, we aimed to investigate the role of CYP1A1 and 2D6 SNPs in the pathogenesis of Ph-ve CML in the Sudanese population.

View Article and Find Full Text PDF

Evaluation of machine learning algorithms and computational structural validation of CYP2D6 in predicting the therapeutic response to tamoxifen in breast cancer.

Eur Rev Med Pharmacol Sci

December 2024

Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain.

Objective: CYP2D6 plays a critical role in metabolizing tamoxifen into its active metabolite, endoxifen, which is crucial for its therapeutic effect in estrogen receptor-positive breast cancer. Single nucleotide polymorphisms (SNPs) in the CYP2D6 gene can affect enzyme activity and thus impact tamoxifen efficacy. This study aimed to use machine learning algorithms (MLAs) to identify significant predictors of Breast Cancer-Free Interval (BCFI) and to apply bioinformatics tools to investigate the structural and functional implications of CYP2D6 SNPs.

View Article and Find Full Text PDF

Use of a Personalized Clinical Decision Support System for Dosing in Psychopharmacotherapy in Patients with Alcoholic Hallucinosis Based on Pharmacogenomic Markers.

Psychopharmacol Bull

January 2025

Sychev, corresponding member of the Academy of Sciences of Russia, MD, PhD, MD, professor, rector, head of clinical pharmacology and therapy department, Russian Medical Academy of Continuous Professional Education of the Ministry of Health of the Russian Federation, Moscow, Russian Federation.

Introduction: Alcoholic hallucinosis (AH) is one of the severe complications of chronic alcoholism, characterized by psychotic symptoms such as auditory hallucinations and delusions. Haloperidol is widely used to treat AH; however, its therapy is often complicated by side effects. A personalized approach using pharmacogenetic testing (particularly the CYP2D6 polymorphism) allows individualization of haloperidol dosage, improving both safety and efficacy of therapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!