A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Microembolic flow disturbances in the cerebral microvasculature with an arcadal network: a numerical simulation. | LitMetric

Flow disturbance due to microembolism in the cerebral microvasculature with an arcadal network was studied by a numerical simulation. A mathematical model for flow in the arcadal network was developed, based on in vivo data of cat cerebral microvasculature and flow velocity. The network model consisted of 45 vessel segments, and 25 branching points. To simulate microvascular responses to blood flow, the following three types of responses to wall shear stress were considered; non-reactive (solid-like), cerebral arteriole, and skeletal muscle arteriole-like responses. The numerical calculation was carried out in the condition where a feeding arteriole was occlused. Flow changes in efferent vessels were evaluated for assessment of blood supply to the local area of cerebral tissue. The present simulation has demonstrated that blood flow in efferent vessels was influenced by the topology of the vascular network and the response pattern in single vessels. The arcadal structure of arterioles might be most effective in response to flow disturbances in efferent vessels.

Download full-text PDF

Source

Publication Analysis

Top Keywords

cerebral microvasculature
12
arcadal network
12
efferent vessels
12
flow disturbances
8
microvasculature arcadal
8
numerical simulation
8
blood flow
8
flow
7
cerebral
5
network
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!