How the widely used botulinum neurotoxin A (BoNT/A) recognizes and enters neurons is poorly understood. We found that BoNT/A enters neurons by binding to the synaptic vesicle protein SV2 (isoforms A, B, and C). Fragments of SV2 that harbor the toxin interaction domain inhibited BoNT/A from binding to neurons. BoNT/A binding to SV2A and SV2B knockout hippocampal neurons was abolished and was restored by expressing SV2A, SV2B, or SV2C. Reduction of SV2 expression in PC12 and Neuro-2a cells also inhibited entry of BoNT/A, which could be restored by expressing SV2 isoforms. Finally, mice that lacked an SV2 isoform (SV2B) displayed reduced sensitivity to BoNT/A. Thus, SV2 acts as the protein receptor for BoNT/A.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/science.1123654 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!