A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

In vivo complementation of complex I by the yeast Ndi1 enzyme. Possible application for treatment of Parkinson disease. | LitMetric

In vivo complementation of complex I by the yeast Ndi1 enzyme. Possible application for treatment of Parkinson disease.

J Biol Chem

Division of Biochemistry, Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA.

Published: May 2006

Recent studies suggest that dysfunction of the NADH-quinone oxidoreductase (complex I) is associated with a number of human diseases, including neurodegenerative disorders such as Parkinson disease. We have shown previously that the single subunit rotenone-insensitive NADH-quinone oxidoreductase (Ndi1) of Saccharomyces cerevisiae mitochondria can restore NADH oxidation in complex I-deficient mammalian cells. The Ndi1 enzyme is insensitive to complex I inhibitors such as rotenone and 1-methyl-4-phenylpyridinium ion, known as a metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). To test the possible use of the NDI1 gene as a therapeutic agent in vivo, we chose a mouse model of Parkinson disease. The NDI1-recombinant adeno-associated virus particles (rAAV-NDI1) were injected unilaterally into the substantia nigra of mice. The animals were then subjected to treatment with MPTP. The degree of neurodegeneration in the nigrostriatal system was assessed immunohistochemically through the analysis of tyrosine hydroxylase and glial fibrillary acidic protein. It was evident that the substantia nigra neurons on the side used for injection of rAAV-NDI1 retained a high level of tyrosine hydroxylase-positive cells, and the ipsilateral striatum exhibited significantly less denervation than the contralateral striatum. Furthermore, striatal concentrations of dopamine and its metabolites in the hemisphere that received rAAV-NDI1 were substantially higher than those of the untreated hemisphere, reaching more than 50% of the normal levels. These results indicate that the expressed Ndi1 protein elicits resistance to MPTP-induced neuronal injury. The present study is the first successful demonstration of complementation of complex I by the Ndi1 enzyme in animals.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M600922200DOI Listing

Publication Analysis

Top Keywords

ndi1 enzyme
12
parkinson disease
12
complementation complex
8
nadh-quinone oxidoreductase
8
substantia nigra
8
ndi1
6
complex
5
vivo complementation
4
complex yeast
4
yeast ndi1
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!