Alternative ionization methods are increasingly being utilized to increase the versatility and selectivity of liquid chromatography/mass spectrometry (LC/MS). One such technique is the practice of using commercially available atmospheric pressure chemical ionization (APCI) sources with the corona discharge turned off, a process termed no-discharge APCI (ND-APCI). The relative LC/MS responses for several different classes of veterinary drugs were obtained by using ND-APCI, electrospray ionization (ESI), and APCI. While the ND-APCI-MS and -MSn spectra for these compounds were comparable with ESI, ND-APCI provided advantages in sensitivity and selectivity for some compounds. Drugs that were charged in solution as cations or sodium adducts responded particularly well with this technique. Instrumental parameters such as temperatures, gas and liquid flow rates, and source design were investigated to determine their effect on the process of ND-APCI. This paper explores advantages of using ND-APCI for the determination and confirmation of drug residues that might be found in food matrices, including malachite green residues in fish tissue and avermectin residues in milk.

Download full-text PDF

Source
http://dx.doi.org/10.1002/rcm.2438DOI Listing

Publication Analysis

Top Keywords

atmospheric pressure
8
pressure chemical
8
chemical ionization
8
drug residues
8
nd-apci
5
no-discharge atmospheric
4
ionization
4
ionization evaluation
4
evaluation application
4
application analysis
4

Similar Publications

Background: Ambient air pollution, detrimental built and social environments, social isolation (SI), low socioeconomic status (SES), and rural (versus urban) residence have been associated with cognitive decline and risk of Alzheimer's disease and related dementias (ADRD). Research is needed to investigate the influence of ambient air pollution and built and social environments on SI and cognitive decline among rural, disadvantaged, ethnic minority communities. To address this gap, this cohort study will recruit an ethnoracially diverse, rural Florida sample in geographic proximity to seasonal agricultural burning.

View Article and Find Full Text PDF

Impaired wound healing affects the life quality of patients and causes a substantial financial burden. Hydrogen-rich medium is reported to have antioxidant and anti-inflammatory effects. However, the role of hydrogen-rich saline (HRS) in cutaneous wound healing remains largely unexplored, especially by metabolomics.

View Article and Find Full Text PDF

The fluorescence detection of amino compounds and the evaluation of their content in environmental samples are vital, not only for assessing food quality but also for studying soil organic matter. Here, we present the synthesis and application of a novel fluorescent probe, 4-(9-acridone)benzylmethyl carbonochloride (APE-Cl), for detecting amino compounds via a chloroformate reaction with fluorescence detection. The complete derivatization reaction of APE-Cl with amino compounds can be accomplished in aqueous acetonitrile within 5 min at room temperature, using 0.

View Article and Find Full Text PDF

Double-Helix Electrode Ion Funnel: A New Ion Funnel Design with an Extended Mass Range.

Anal Chem

January 2025

Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu 610065, People's Republic of China.

The development of an atmospheric pressure interface (API) with a high ion transfer efficiency and wide mass range is advantageous for the performance improvement of mass spectrometry (MS) instruments. In this work, a novel ion guide, namely, the double-helix electrode ion funnel (DHE-IF), has been developed to enhance the ion transmission over a wide mass range in the rough vacuum region. The DHE-IF consists of two funnel-shaped helix electrodes.

View Article and Find Full Text PDF

Novel technique to produce porous thermochromic VO nanoparticle films using gas aggregation source.

Sci Rep

January 2025

Department of Macromolecular Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00, Prague 8, Czech Republic.

Vanadium dioxide (VO) is a phase transition material that undergoes semiconductor-to-metal transition at the temperature of about 68 °C. This extraordinary feature triggered intensive research focused on the controlled synthesis of VO. In this study, we introduce and investigate an original linker- and solvent-free strategy enabling the production of highly porous VO nanoparticle-based films.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!