TrwC is a DNA strand transferase that catalyzes the initial and final stages of conjugative DNA transfer. We have solved the crystal structure of the N-terminal relaxase domain of TrwC in complex with a 27 base-long DNA oligonucleotide that contains both the recognition hairpin and the scissile phosphate. In addition, a series of ternary structures of protein-DNA complexes with different divalent cations at the active site have been solved. Systematic anomalous difference analysis allowed us to determine unambiguously the nature of the metal bound. Zn2+, Ni2+ and Cu2+ were found to bind the histidine-triad metal binding site. Comparison of the structures of the different complexes suggests two pathways for the DNA to exit the active pocket. They are probably used at different steps of the conjugative DNA-processing reaction. The structural information allows us to propose (i) an enzyme mechanism where the scissile phosphate is polarized by the metal ion facilitating the nucleophilic attack of the catalytic tyrosine, and (ii) a probable sequence of events during conjugative DNA processing that explains the biological function of the relaxase.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmb.2006.02.018 | DOI Listing |
Small
January 2025
Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China.
In this study, we present an ultrasensitive and specific multiplexed detection method for SARS-CoV-2 and influenza (Flu) utilizing CRISPR/Cas13a technology combined with a hydrogel-encapsulated photonic crystal (PhC) barcode integrated with hybridization chain reaction (HCR). The barcodes, characterized by core-shell structures, are fabricated through partial replication of periodically ordered hexagonally close-packed silicon dioxide beads. Consequently, the opal hydrogel shell of these barcodes features abundant interconnected pores that provide a substantial surface area for probe immobilization.
View Article and Find Full Text PDFAnal Chem
January 2025
College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China.
Precise identification and analysis of multiple protein biomarkers on the surface of breast cancer cell-derived extracellular vesicles (BC-EVs) are of great significance for noninvasive diagnosis of the breast cancer subtypes, but it remains a major challenge owing to their high heterogeneity and low abundance. Herein, we established a CRISPR-based homogeneous electrochemical strategy for near-zero background and ultrasensitive detection of BC-EVs. To realize the high-performance capture and isolation of BC-EVs, fluidity-enhanced magnetic nanoprobes were facilely prepared.
View Article and Find Full Text PDFTalanta
January 2025
School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China; Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China. Electronic address:
The use of dynamic DNA logic circuits for disease diagnosis at the molecular level plays a considerable role in biomedical fields. Nevertheless, how to create programmable nanomachines based on molecular logical gates to accurately identify multiple biomarkers from tumor cells remains a pivotal challenge. Herein, we developed a DNA-based nanomachine for analyzing and imaging multiple microRNAs (miRNAs) in cancerous cells with a logical AND operation.
View Article and Find Full Text PDFNat Commun
January 2025
Macromolecular Machines Laboratory, The Francis Crick Institute, London, NW1 1AT, UK.
The MCM motor of the eukaryotic replicative helicase is loaded as a double hexamer onto DNA by the Origin Recognition Complex (ORC), Cdc6, and Cdt1. ATP binding supports formation of the ORC-Cdc6-Cdt1-MCM (OCCM) helicase-recruitment complex where ORC-Cdc6 and one MCM hexamer form two juxtaposed rings around duplex DNA. ATP hydrolysis by MCM completes MCM loading but the mechanism is unknown.
View Article and Find Full Text PDFAnal Chem
January 2025
Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
A sensitive fluorescence biosensor was developed for microcystin-LR (MC-LR) detection using H1, H2, and H3 DNA probes as sensing elements. The aptamer in H1 can recognize the target. H2 was labeled with FAM and BHQ.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!