BioParser: a tool for processing of sequence similarity analysis reports.

Appl Bioinformatics

Department of Biochemistry and Molecular Biology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil.

Published: June 2006

Unlabelled: The widely used programs BLAST (in this article, 'BLAST' includes both the National Center for Biotechnology Information [NCBI] BLAST and the Washington University version WU BLAST) and FASTA for similarity searches in nucleotide and protein databases usually result in copious output. However, when large query sets are used, human inspection rapidly becomes impractical. BioParser is a Perl program for parsing BLAST and FASTA reports. Making extensive use of the BioPerl toolkit, the program filters, stores and returns components of these reports in either ASCII or HTML format. BioParser is also capable of automatically feeding a local MySQL database with the parsed information, allowing subsequent filtering of hits and/or alignments with specific attributes. For this reason, BioParser is a valuable tool for large-scale similarity analyses by improving the access to the information present in BLAST or FASTA reports, facilitating extraction of useful information of large sets of sequence alignments, and allowing for easy handling and processing of the data.

Availability: BioParser is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 2.0 license terms (http://creativecommons.org/licenses/by-nc-nd/2.0/) and is available upon request. Additional information can be found at the BioParser website (http://www.dbbm.fiocruz.br/BioParser.html).

Download full-text PDF

Source
http://dx.doi.org/10.2165/00822942-200605010-00007DOI Listing

Publication Analysis

Top Keywords

blast fasta
12
fasta reports
8
bioparser
6
blast
5
bioparser tool
4
tool processing
4
processing sequence
4
sequence similarity
4
similarity analysis
4
reports
4

Similar Publications

Introduction Dermatophytes are the most common cause of superficial fungal infection. They are mostly diagnosed using phenotypic methods, but recently the molecular methods seem to be gaining ground. The objective of the present study was to compare the phenotypic and genotypic methods of identification of dermatophytes and understand the feasibility of using molecular methods for routine diagnosis of dermatophytosis.

View Article and Find Full Text PDF

The European Bioinformatics Institute (EMBL-EBI)'s Job Dispatcher framework provides access to a wide range of core databases and analysis tools that are of key importance in bioinformatics. As well as providing web interfaces to these resources, web services are available using REST and SOAP protocols that enable programmatic access and allow their integration into other applications and analytical workflows and pipelines. This article describes the various options available to researchers and bioinformaticians who would like to use our resources via the web interface employing RESTful web services clients provided in Perl, Python, and Java or who would like to use Docker containers to integrate the resources into analysis pipelines and workflows.

View Article and Find Full Text PDF

Introduction:   is categorized as a priority pathogen due to its propensity for multi-drug resistance, exhibiting resistance against the last resort of antibiotics. It is also considered a potent nosocomial pathogen, so targeting the microbe using novel strategies would be the need of the hour. In this context, the in-silico computational approach would serve the best to design the possible epitope peptides, which may be further considered for the experimental trials for their immunological response.

View Article and Find Full Text PDF

Background: After the start of the worldwide COVID-19 vaccination campaign, there were increased reports of autoimmune diseases occurring de novo after vaccination. This in silico analysis aimed to investigate the presence of protein epitopes encoded by the BNT-162b2 mRNA vaccine, one of the most widely administered COVID-19 vaccines, which could induce autoimmunity in predisposed individuals.

Methods: The FASTA sequence of the protein encoded by the BNT-162b2 vaccine served as the key input to the Immune Epitope Database and Analysis Resource.

View Article and Find Full Text PDF

Background: Leucine-rich repeats (LRRs) occurring in tandem are 20-29 amino acids long. Eleven LRR types have been recognized; they include plant-specific (PS) type with the consensus of LxxLxLxxNxL SGxIPxxIxxLxx of 24 residues and SDS22-like type with the consensus of LxxLxLxxNxL xxIxxIxxLxx of 22 residues.

Objective: A viral LRR protein in metagenome data indicated that most of the LRRs (5/6 = 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!