Cation distribution in LiMgVO4 and LiZnVO4: structural and spectroscopic study.

J Phys Chem B

Dipartimento di Chimica Fisica, M. Rolla dell'Università, viale Taramelli 16, 27100 Pavia.

Published: March 2006

The room temperature cation occupancy in LiMgVO(4) and LiZnVO(4) crystallographic sites is obtained by means of the combined use of X-ray powder diffraction (XRPD), (7)Li and (51)V magic angle spinning nuclear magnetic resonance (MAS NMR), and micro-Raman measurements. In the LiMgVO(4) Cmcm orthorhombic structure, the 4c (C(2)(v) symmetry) tetrahedral vanadium site is fully ordered; on the contrary, the Li 4c tetrahedral site and the 4b (C(2)(h) symmetry) Mg octahedral site display about 22% of reciprocal cationic exchange. Higher cationic disorder is observed in LiZnVO(4): the three cations can distribute on the three tetrahedral and distinct sites of the R-3 structure. XRPD and MAS NMR analysis results highly agree for what concerns vanadium ion distribution on the three cationic sites (about 25, 26, and 47%). From the full profile fitting of XRPD patterns with the Rietveld method, it is also obtained that Li(+) displays a slightly preferred occupation of the T1 position (approximately 55%) and Zn(2+) of the T2 position (approximately 46%). The vibrational spectra of the two compounds are characterized by different peak positions and broadening of the Raman modes, reflecting the cation distribution and the local vibrational unit distortion. A comparison is also made with recent Raman results on Li(3)VO(4). High temperature XRPD measurements rule out possible structural transitions up to 673 K for both compounds.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp057088tDOI Listing

Publication Analysis

Top Keywords

cation distribution
8
limgvo4 liznvo4
8
mas nmr
8
distribution limgvo4
4
liznvo4 structural
4
structural spectroscopic
4
spectroscopic study
4
study room
4
room temperature
4
temperature cation
4

Similar Publications

After cyclo-pentazolate anion, a 5/6 fused structure of N is constructed, and four novel nitrogen-rich ionic compounds are assembled on its basis. The results of the quantum calculations revealed an uneven distribution of electrons on cyclo-N , with significant charge density near the N5/N9 atoms and an ADCH charge of -0.425.

View Article and Find Full Text PDF

A novel polysaccharide in the envelope of influences the septal secretion of preproteins with a YSIRK/GXXS motif.

J Bacteriol

January 2025

Department of Microbiology, Howard Taylor Ricketts Laboratory, The University of Chicago, Chicago, Illinois, USA.

Unlabelled: Bacteria transport proteins across the plasma membrane to assemble their envelope, acquire nutrients, and establish appropriate interactions with their environment. The majority of these proteins are synthesized as precursors with a cleavable N-terminal signal sequence for recognition by the Sec machinery. In , a small subset of secreted precursors carries a YSIRK/GXXS motif.

View Article and Find Full Text PDF

NH-Modulated Cathodic Interfacial Spatial Charge Redistribution for High-Performance Dual-Ion Capacitors.

Nanomicro Lett

January 2025

Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China.

Compared with Zn, the current mainly reported charge carrier for zinc hybrid capacitors, small-hydrated-sized and light-weight NH is expected as a better one to mediate cathodic interfacial electrochemical behaviors, yet has not been unraveled. Here we propose an NH-modulated cationic solvation strategy to optimize cathodic spatial charge distribution and achieve dynamic Zn/NH co-storage for boosting Zinc hybrid capacitors. Owing to the hierarchical cationic solvated structure in hybrid Zn(CFSO)-NHCFSO electrolyte, high-reactive Zn and small-hydrate-sized NH(HO) induce cathodic interfacial Helmholtz plane reconfiguration, thus effectively enhancing the spatial charge density to activate 20% capacity enhancement.

View Article and Find Full Text PDF

Quantum Molecular Dynamics Approach to Understanding Interactions in Betaine Chloride and Amino Acid Natural Deep Eutectic Solvents.

ACS Phys Chem Au

January 2025

Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo, São José dos Campos, 12247-014 São Paulo, Brazil.

The unique properties and versatile applications of natural deep eutectic solvents (NaDES) have sparked significant interest in the field of green chemistry. Comprised of natural components that form liquids at room temperature through strong noncovalent electrostatic interaction, these solvents are cost-effective, nontoxic, and versatile. Betaine chloride-based NaDES, in particular, have shown promise in biocatalysis and sugar extraction due to their excellent properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!