Prevalence of agglutinating antibodies to Toxoplasma gondii in adult and fetal mule deer (Odocoileus hemionus) from Nebraska.

J Parasitol

Center for Molecular Medicine and Infectious Diseases, Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg 24061-0342, USA.

Published: December 2005

Toxoplasma gondii is an apicomplexan parasite of mammals and birds. Herbivores acquire postnatal infection by ingesting oocysts from contaminated food or water. Toxoplasma gondii infection is common in white-tailed deer, Odocoileus virginianus, but little is known about the prevalence of infection in mule deer, O. hemionus. We examined sera from 89 mule deer from Nebraska for agglutinating antibodies to T. gondii using the modified direct agglutination test (MAT) with formalin-fixed tachyzoites as antigen. Thirty-one (35%) of the samples were positive at dilutions of > or = 1:25. Samples were examined from 29 fetuses from these mule deer and none were positive in the MAT. Sera from 14 white-tailed deer from Nebraska were also examined and 6 (43%) were positive for T. gondii. Samples were examined from 5 fetuses from these white-tailed deer and none was positive in the MAT. Our results in both deer species from Nebraska are similar to studies conducted in white-tailed deer from other regions of the United States. Our findings indicate that mule deer are frequently infected with T. gondii and that mule-deer meat may be a source of human infection.

Download full-text PDF

Source
http://dx.doi.org/10.1645/GE-547R.1DOI Listing

Publication Analysis

Top Keywords

mule deer
20
white-tailed deer
16
toxoplasma gondii
12
deer
10
agglutinating antibodies
8
deer odocoileus
8
deer nebraska
8
samples examined
8
examined fetuses
8
deer positive
8

Similar Publications

Effective, practical options for managing disease in wildlife populations are limited, especially after diseases become established. Removal strategies (e.g.

View Article and Find Full Text PDF
Article Synopsis
  • Jumbo phages are large viruses with genomes over 200 kbp, and little is known about their life cycle and unique reproductive genes.
  • Researchers assembled 668 high-quality jumbo phage genomes from 955 samples of various animal species and identified the largest known phage genome at 716 kbp, revealing they can synthesize NAD and contain numerous NAD-consuming enzymes.
  • The study highlights the widespread presence of NAD-jumbo phages in different ecosystems, emphasizing the need for further research on their ecological roles and survival strategies.
View Article and Find Full Text PDF

Wildlife species are routinely captured for translocation, general health monitoring, and research-based pursuits to guide wildlife management. Mule deer () were captured for various research projects and management actions in the Trans-Pecos and Panhandle regions of Texas from 2015 to 2019. The objective of this study was to develop hematologic and biochemical parameters for free-ranging mule deer in Texas and to develop a health monitoring system for current and future mule deer population management.

View Article and Find Full Text PDF

Spatiotemporal occupancy patterns of chronic wasting disease.

Front Vet Sci

November 2024

Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States.

Introduction: Chronic wasting disease (CWD) among cervids in Kansas has seen a consistent rise over the years, both in terms of the number of infections and its geographical spread. In this study, we assessed the occupancy patterns of CWD among white-tailed deer and mule deer across the state.

Methods: Using surveillance data collected since 2005, we applied a dynamic patch occupancy model within a Bayesian framework, incorporating various environmental covariates.

View Article and Find Full Text PDF
Article Synopsis
  • Caring for newborns limits mammalian females' ability to gather resources, especially during the energy-demanding early lactation period.
  • Different ungulates have developed various strategies for protecting their vulnerable newborns, from staying hidden to being mobile, which can influence their mothers' movement patterns.
  • A study of 54 populations of 23 ungulate species shows that maternal movements are affected by the resource availability and type of neonatal strategy, highlighting the importance of these tactics in understanding how species adapt to environmental changes.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!