Cell motility is a complex biological process, involved in development, inflammation, homeostasis, and pathological processes such as the invasion and metastatic spread of cancer. Here, we describe a genomic screen designed to identify inhibitors of cell migration. A library of 10,996 small interfering RNAs (targeting 5,234 human genes) was screened for their ability to block the migration of a highly motile ovarian carcinoma cell line, SKOV-3, by using a 384-well wound-healing assay coupled with automated microscopy and wound quantification. Two or more small interfering RNAs against four genes, CDK7, DYRK1B, MAP4K4 (NIK/HGK) (MAP4K4, mitogen-activated protein 4 kinase 4), and SCCA-1 (SerpinB3), potently blocked the migration of SKOV-3 cells, concordant with reduced transcript levels. Further studies of the promigratory role of MAP4K4 showed that the knockdown of this transcript inhibited the migration of multiple carcinoma cell lines, indicating a broad role in cell motility and potently suppressed the invasion of SKOV-3 cells in vitro. The effect of MAP4K4 on cellular migration was found to be mediated through c-Jun N-terminal kinase, independent of AP1 activation and downstream transcription. Accordingly, small molecule inhibition of c-Jun N-terminal kinase suppressed SKOV-3 cell migration, underscoring the potential therapeutic utility of mitogen-activated protein kinase pathway inhibition in cancer progression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1383649PMC
http://dx.doi.org/10.1073/pnas.0600040103DOI Listing

Publication Analysis

Top Keywords

small interfering
12
cell motility
12
cell migration
8
interfering rnas
8
carcinoma cell
8
mitogen-activated protein
8
protein kinase
8
skov-3 cells
8
c-jun n-terminal
8
n-terminal kinase
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!