An insight into a previously unknown step in B(12) biosynthesis was unexpectedly obtained through our analysis of a mutant of the symbiotic nitrogen fixing bacterium Sinorhizobium meliloti. This mutant was identified based on its unusually bright fluorescence on plates containing the succinoglycan binding dye calcofluor. The mutant contains a Tn5 insertion in a gene that has not been characterized previously in S. meliloti. The closest known homolog is the bluB gene of Rhodobacter capsulatus, which is implicated in the biosynthesis of B(12) (cobalamin). The S. meliloti bluB mutant is unable to grow in minimal media and fails to establish a symbiosis with alfalfa, and these defects can be rescued by the addition of vitamin B(12) (cyanocobalamin) or the lower ligand of cobalamin, 5,6-dimethylbenzimidazole (DMB). Biochemical analysis demonstrated that the bluB mutant does not produce cobalamin unless DMB is supplied. Sequence comparison suggests that BluB is a member of the NADH/flavin mononucleotide (FMN)-dependent nitroreductase family, and we propose that it is involved in the conversion of FMN to DMB.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1450223 | PMC |
http://dx.doi.org/10.1073/pnas.0509384103 | DOI Listing |
Biochim Biophys Acta Proteins Proteom
December 2024
Departamento de Física, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral and CONICET, S3000ZAA Santa Fe, Argentina.
Int J Mol Sci
November 2024
Institute of Biology, University of Szczecin, Wąska 13, 71-415 Szczecin, Poland.
The phenylpropanoid biosynthesis pathway is involved in the response of plants to stress factors, including microorganisms. This paper presents how free-living strains of rhizobacteria KK5, KK7, KK4, and the symbiotic strain KK13 affect the expression of genes encoding phenylalanine ammonia-lyase (PAL), the activity of this enzyme, and the production of phenolic compounds in . Seedlings were inoculated with rhizobacteria, then at T0, T24, T72, and T168 after inoculation, the leaves and roots were analyzed for gene expression, enzyme activity, and the content of phenolic compounds.
View Article and Find Full Text PDFBMC Microbiol
December 2024
Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China.
Background: Sinorhizobium meliloti is noted for its exceptional capacity to produce unsaturated fatty acids (UFAs). Earlier studies have indicated that S. meliloti primarily employs the FabA-FabB pathway for UFA synthesis, however, the mechanisms remain elusive.
View Article and Find Full Text PDFbioRxiv
November 2024
Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, U.S.A.
Cobamides, the vitamin B (cobalamin) family of cofactors, are used by most organisms but produced by only a fraction of prokaryotes, and are thus considered key shared nutrients among microbes. Cobamides are structurally diverse, with multiple different cobamides found in most microbial communities. The ability to use different cobamides has been tested for several bacteria and microalgae, and nearly all show preferences for certain cobamides.
View Article and Find Full Text PDFThis study aimed to identify and characterize actinobacteria and rhizobia with plant growth-promoting (PGP) traits from chickpea plants. Out of 275 isolated bacteria, 25 actinobacteria and 5 chickpea rhizobia showed 1-aminocyclopropane-1-carboxylate deaminase (ACCd) activity. Selected chickpea rhizobia were tested for their nodulating capacity under sterile and non-sterile soil conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!