Natriuretic peptides (NP) mediate their effects by activating membrane-bound guanylyl cyclase-coupled receptors A (NPR-A) or B (NPR-B). Whereas the pathophysiological role of NPR-A has been widely studied, only limited knowledge on the cardiovascular function of NPR-B is available. In vitro studies suggest antiproliferative and antihypertrophic actions of the NPR-B ligand C-type NP (CNP). Because of the lack of a specific pharmacological inhibitor, these effects could not clearly be attributed to impaired NPR-B signaling. Recently, gene deletion revealed a predominant role of NPR-B in endochondral ossification and development of female reproductive organs. However, morphological abnormalities and premature death of NPR-B-deficient mice preclude detailed cardiovascular phenotyping. In the present study, a dominant-negative mutant (NPR-BDeltaKC) was used to characterize CNP-dependent NPR-B signaling in vitro and in transgenic rats. Here we demonstrate that reduced CNP- but not atrial NP-dependent cGMP response attenuates antihypertrophic potency of CNP in vitro. In transgenic rats, NPR-BDeltaKC expression selectively reduced NPR-B but not NPR-A signaling. NPR-BDeltaKC transgenic rats display progressive, blood pressure-independent cardiac hypertrophy and elevated heart rate. The hypertrophic phenotype is further enhanced in chronic volume overload-induced congestive heart failure. Thus, this study provides evidence linking NPR-B signaling to the control of cardiac growth.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1450239PMC
http://dx.doi.org/10.1073/pnas.0510019103DOI Listing

Publication Analysis

Top Keywords

transgenic rats
16
npr-b signaling
12
cardiac hypertrophy
8
dominant-negative mutant
8
npr-b
8
vitro transgenic
8
transgenic
4
hypertrophy transgenic
4
rats
4
rats expressing
4

Similar Publications

Pattern recognition analysis in brain research has improved understanding of sensory processing and led to the identification of default brain networks in neuroimaging studies. The current study uses pattern recognition analysis to extend our previous findings showing conditioned fear learning and novelty-exposure (i.e.

View Article and Find Full Text PDF

Introduction: Neuroinflammation derived from the activation of the microglia is considered a vital pathogenic factor of Alzheimer's Disease (AD). T-006, a tetramethylpyrazine derivative, has been found to alleviate cognitive deficits via inhibiting tau expression and phosphorylation in AD transgenic mouse models. Recently, T-006 has been proven to dramatically decrease the levels of total Amyloid β (Aβ) peptide and Glial Fibrillary Acidic Protein (GFAP) and suppress the expression of ionized calcium binding adaptor molecule-1 (Iba-1) in APP/PS1 mice.

View Article and Find Full Text PDF

Several potent carcinogenic nitrosamines, including N-nitrosodiethylamine (NDEA) and N-nitrosodimethylamine (NDMA), induce micronuclei in the micronucleated hepatocyte (MNHEP) assay but not in the micronucleated reticulocyte (MNRET) assay. However, the MNHEP assay is not as frequently used as the MNRET assay for evaluating in vivo genotoxicity. The present study evaluated MN formation in the liver of Big Blue transgenic rats exposed to four small-molecule nitrosamines, NDMA, N-nitrosodiisopropylamine (NDIPA), N-nitrosoethylisoporpylamine (NEIPA), and N-nitrosomethylphenylamine (NMPA), using a repeat-dose protocol typically used for in vivo mutagenicity studies.

View Article and Find Full Text PDF

We developed a versatile 'IHC/LCM-Seq' method for spatial transcriptomics of immunohistochemically detected neurons collected with laser-capture microdissection (LCM). IHC/LCM-Seq uses aluminon and polyvinyl sulfonic acid for inventive RNA-preserving strategies to maintain RNA integrity in free-floating sections of 4% formaldehyde-fixed brains. To validate IHC/LCM-Seq, we first immunostained and harvested striatal cholinergic interneurons with LCM.

View Article and Find Full Text PDF

Restraint to Induce Stress in Mice and Rats.

J Vis Exp

December 2024

Department of Psychological and Brain Sciences, Fairfield University;

Across all animal species, exposure to stressful conditions induces stress responses. One method to study the effects of stress using rodent models is the restraint stress procedure. Restraint stress has been used for decades to investigate changes in physiology, genetics, neurobiology, immunology, and other systems impacted by stress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!