A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Reveromycin A, an agent for osteoporosis, inhibits bone resorption by inducing apoptosis specifically in osteoclasts. | LitMetric

Mature bone-resorbing osteoclasts (OCs) mediate excessive bone loss seen in several bone disorders, including osteoporosis. Here, we showed that reveromycin A (RM-A), a small natural product with three carboxylic groups in its structure, induced apoptosis specifically in OCs, but not in OC progenitors, nonfunctional osteoclasts, or osteoblasts. RM-A inhibited protein synthesis in OCs by selectively blocking enzymatic activity of isoleucyl-tRNA synthetase. The proapoptotic effect of RM-A was inhibited by neutralization or disruption of the acidic microenvironment, a prominent characteristic of OCs. RM-A was incorporated in OCs but not in nonfunctional osteoclasts and OC progenitors in neutral culture medium. Effects of RM-A on OC apoptosis increased under acidic culture conditions. RM-A not only was incorporated, but also induced apoptosis in OC progenitors in acidic culture medium. RM-A inhibited osteoclastic pit formation, decreased prelabeled (45)Ca release in organ cultures, and antagonized increased bone resorption in ovariectomized mice. These results suggested that preventive effects of RM-A on bone resorption in vitro and in vivo were caused by apoptosis through inhibition of isoleucyl-tRNA synthetase in OCs and that specific sensitivity of OCs to RM-A was due to the acidic microenvironment, which increased cell permeability of RM-A by suppressing dissociation of protons from carboxylic acid moieties, making them less polar. This unique mechanism suggested that RM-A might represent a type of therapeutic agent for treating bone disorders associated with increased bone loss.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1450238PMC
http://dx.doi.org/10.1073/pnas.0505663103DOI Listing

Publication Analysis

Top Keywords

bone resorption
12
rm-a inhibited
12
rm-a
11
bone loss
8
bone disorders
8
induced apoptosis
8
nonfunctional osteoclasts
8
isoleucyl-trna synthetase
8
acidic microenvironment
8
ocs rm-a
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!