Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The impact of Niels Bohr's 1932 "Light and Life" lecture on Max Delbrück's lifelong search for a form of "complementarity" in biology is well documented and much discussed, but the precise nature of that influence remains subject to misunderstanding. The standard reading, which sees Delbrück's transition from physics into biology as inspired by the hope that investigation of biological phenomena might lead to a breakthrough discovery of new laws of physics, is colored much more by Erwin Schrödinger's What Is Life? (1944) than is often acknowledged. Bohr's view was that teleological and mechanistic descriptions are mutually exclusive yet jointly necessary for an exhaustive understanding of life. Although Delbrück's approach was empirical and less self-consciously philosophical, he shared Bohr's hope that scientific investigation would vindicate the view that at least some aspects of life are not reducible to physico-chemical terms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1086/498591 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!