Recent studies on Northern Ireland rivers have shown that summer nitrite (NO(inf2)(sup-)) concentrations greatly exceed the European Union guideline of 3 (mu)g of N liter(sup-1) for rivers supporting salmonid fisheries. In fast-flowing aerobic small streams, NO(inf2)(sup-) is thought to originate from nitrification, due to the retardation of Nitrobacter strains by the presence of free ammonia. Multiple regression analyses of NO(inf2)(sup-) concentrations against water quality variables of the six major rivers of the Lough Neagh catchment in Northern Ireland, however, suggested that the high NO(inf2)(sup-) concentrations found in the summer under warm, slow-flow conditions may result from the reduction of NO(inf3)(sup-). This hypothesis was supported by field observations of weekly changes in N species. Here, reduction of NO(inf3)(sup-) was observed to occur simultaneously with elevation of NO(inf2)(sup-) levels and subsequently NH(inf4)(sup+) levels, indicating that dissimilatory NO(inf3)(sup-) reduction to NH(inf4)(sup+) (DNRA) performed by fermentative bacteria (e.g., Aeromonas and Vibrio spp.) is responsible for NO(inf2)(sup-) accumulation in these large rivers. Mechanistic studies in which (sup15)N-labelled NO(inf3)(sup-) in sediment extracts was used provided further support for this hypothesis. Maximal concentrations of NO(inf2)(sup-) accumulation (up to 1.4 mg of N liter(sup-1)) were found in sediments deeper than 6 cm associated with a high concentration of metabolizable carbon and anaerobic conditions. The (sup15)N enrichment of the NO(inf2)(sup-) was comparable to that of the NO(inf3)(sup-) pool, indicating that the NO(inf2)(sup-) was predominantly NO(inf3)(sup-) derived. There is evidence which suggests that the high NO(inf2)(sup-) concentrations observed arose from the inhibition of the DNRA NO(inf2)(sup-) reductase system by NO(inf3)(sup-).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1389305PMC
http://dx.doi.org/10.1128/aem.63.12.4679-4685.1997DOI Listing

Publication Analysis

Top Keywords

noinf2sup- concentrations
16
noinf2sup-
11
northern ireland
8
high noinf2sup-
8
reduction noinf3sup-
8
noinf2sup- accumulation
8
noinf3sup-
7
concentrations
5
dissimilatory nitrate
4
reduction
4

Similar Publications

Recent studies on Northern Ireland rivers have shown that summer nitrite (NO(inf2)(sup-)) concentrations greatly exceed the European Union guideline of 3 (mu)g of N liter(sup-1) for rivers supporting salmonid fisheries. In fast-flowing aerobic small streams, NO(inf2)(sup-) is thought to originate from nitrification, due to the retardation of Nitrobacter strains by the presence of free ammonia. Multiple regression analyses of NO(inf2)(sup-) concentrations against water quality variables of the six major rivers of the Lough Neagh catchment in Northern Ireland, however, suggested that the high NO(inf2)(sup-) concentrations found in the summer under warm, slow-flow conditions may result from the reduction of NO(inf3)(sup-).

View Article and Find Full Text PDF

A highly selective liquid membrane nitrite microsensor based on the hydrophobic ion-carrier aquocyanocobalt(III)-hepta(2-phenylethyl)-cobrynate is described. The sensor has a tip diameter of 10 to 15 (mu)m. The response is log-linear in freshwater down to 1 (mu)M NO(inf2)(sup-) and in seawater to 10 (mu)M NO(inf2)(sup-).

View Article and Find Full Text PDF

A biosensor for NO(inf3)(sup-) was constructed by attaching a 30- to 70-(mu)m-wide capillary with immobilized denitrifying bacteria in front of an N(inf2)O microsensor. These bacteria reduced O(inf2) so that only bacteria in the very tip of the sensor were exposed to O(inf2) whereas bacteria at a greater depth could carry out the anaerobic process of denitrification. In the presence of acetylene, which inhibits nitrous oxide reductase, bacteria reduced NO(inf3)(sup-) (or NO(inf2)(sup-)) from the surrounding medium to N(inf2)O and the concentration sensed by the N(inf2)O microsensor was directly proportional to the concentration of NO(inf3)(sup-) in the medium.

View Article and Find Full Text PDF

The kinetics of inhibition of CH(inf4) oxidation by NH(inf4)(sup+), NO(inf2)(sup-), and NO(inf3)(sup-) in a humisol was investigated. Soil slurries exhibited nearly standard Michaelis-Menten kinetics, with half-saturation constant [K(infm(app))] values for CH(inf4) of 50 to 200 parts per million of volume (ppmv) and V(infmax) values of 1.1 to 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!