The growth curve of Azotobacter vinelandii was biphasic when the organism was grown in a medium containing a mixture of galactose and glucose. Galactose was the primary carbon source; glucose was also consumed, but the rate at which it was consumed was lower than the rate at which galactose was consumed during the first phase of growth. Metabolic pathways for both sugars were induced. Cell cultures exhibited a second lag period as galactose was depleted. The length of this lag phase varied from 2 to 10 h depending on the pregrowth history of the cells. The second log growth phase occurred at the expense of the remaining glucose in the medium and was accompanied by induction of the high-maximum rate of metabolism glucose-induced glucose permease and increases in the levels of glucose metabolic enzymes. The second lag phase of diauxie may have been due to the time required for induction of the glucose-induced glucose permease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1388343PMC
http://dx.doi.org/10.1128/aem.61.2.430-433.1995DOI Listing

Publication Analysis

Top Keywords

azotobacter vinelandii
8
glucose
8
galactose glucose
8
second lag
8
lag phase
8
glucose-induced glucose
8
glucose permease
8
galactose
5
diauxic growth
4
growth azotobacter
4

Similar Publications

Heterologous expression of nitrogenase has been actively pursued because of the far-reaching impact of this enzyme on agriculture, energy and environment. Yet, isolation of an active two-component, metallocentre-containing nitrogenase from a non-diazotrophic host has yet to be accomplished. Here, we report the heterologous synthesis of an active Mo-nitrogenase by combining genes from and in .

View Article and Find Full Text PDF

synthesis of semiconductor nanoparticles in for light-driven ammonia production.

Nanoscale

December 2024

Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.

Ammonia (NH) is an important commodity chemical used as an agricultural fertilizer and hydrogen-storage material. There has recently been much interest in developing an environmentally benign process for NH synthesis. Here, we report enhanced production of ammonia from diazotrophs under light irradiation using hybrid composites of inorganic nanoparticles (NPs) and bacterial cells.

View Article and Find Full Text PDF

Biological nitrogen fixation, performed by the enzyme nitrogenase, supplies nearly 50% of the bioavailable nitrogen pool on Earth, yet the structural nature of the enzyme intermediates involved in this cycle remains ambiguous. Here we present four high resolution cryoEM structures of the nitrogenase MoFe-protein, sampled along a time course of alkaline reaction mixtures under an acetylene atmosphere. This series of structures reveals a sequence of salient changes including perturbations to the inorganic framework of the FeMo-cofactor; depletion of the homocitrate moiety; diminished density around the S2B belt sulfur of the FeMo-cofactor; rearrangements of cluster-adjacent side chains; and the asymmetric displacement of the FeMo-cofactor.

View Article and Find Full Text PDF

In this research work, a main biopolymer group of polyhydroxyalkanoates (PHAs) in the form of polyhydroxybutyrate (PHB) was synthesised by a pure bacterial strain of via repeated fed-batch fermentation. An agricultural crop, sugar cane, was used as the sole carbon source. Firstly, batch fermentation was investigated considering variations in incubation times (24 h, 48 h, and 96 h).

View Article and Find Full Text PDF

Recent Trends in the Production and Recovery of Bioplastics Using Polyhydroxyalkanoates Copolymers.

Microorganisms

October 2024

Departamento de Ingeniería Celular y Biocatálisis, Universidad Nacional Autónoma de México, Cuernavaca 62210, Morelos, Mexico.

Article Synopsis
  • * Among PHAs, the P(3HB--3HV) copolymers are notable for their soft, flexible nature, making them suitable for a wider range of applications, particularly in bioplastics.
  • * Recent advancements have focused on enhancing PHA production through innovative fermentation strategies using various microbial strains and low-cost substrates, aiming to improve the yield and mechanical properties of copolymers for biomedical uses.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!