Objective: To investigate the hemodynamic and metabolic effects of the peroxisome proliferator-activated receptor (PPAR)-gamma ligand and nuclear-factor (NF)-kappa B inhibitor 15-deoxy-Delta12,14-prostaglandin-J2 (15d-PGJ2) during long-term, hyperdynamic porcine endotoxemia.
Design: Prospective, randomized, controlled experimental study with repeated measures.
Setting: Investigational animal laboratory.
Subjects: 19 anesthetized, mechanically ventilated and instrumented pigs.
Interventions: At 12 h of continuous intravenous endotoxin and hydroxyethylstarch to keep mean arterial pressure (MAP)>60 mmHg, swine randomly received vehicle (control group, n=10) or 15-deoxy-Delta12,14-prostaglandin-J2 (15d-PGJ2 group, n=9; 1 microg kg(-1) min(-1) loading dose during 1 h; thereafter,0.25 microg kg(-1) min(-1) for 11 h).
Measurements And Results: Hemodynamic, metabolic and organ function parameters were assessed together with parameters of nitric oxide production and oxidative stress. 15d-PGJ2 prevented the endotoxin-induced progressive hypotension, due to a positive inotropic effect, which resulted in a significantly higher blood pressure during the treatment phase and prevented the rise in hepatic vein alanine-aminotransferase activity. It did not affect, however, any other parameter of organ function nor of nitric oxide production, proinflammatory cytokine release or lipid peroxidation (8-isoprostane).
Conclusions: 15d-PGJ2 stabilized systemic hemodynamics, due to improved myocardial performance, and resulted in an only transient effect on alanine-aminotransferase activity, without further beneficial effect on endotoxin-induced metabolic and organ function derangements. Low tissue 15d-PGJ2 concentrations and/or the delayed drug administration may explain these findings.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00134-006-0107-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!