Background: Mutations in the SPG7 gene, which encodes paraplegin, are responsible for an autosomal recessive hereditary spastic paraplegia (HSP).
Objective: To screen the SPG7 gene in a large population of HSP families compatible with autosomal recessive transmission.
Methods: The authors analyzed 136 probands with pure or complex HSP for mutations in the SPG7 using denaturation high-performance liquid chromatography and direct sequencing.
Results: The authors identified 47 variants including 6 mutations, 27 polymorphisms, and 14 changes with unknown effects. In one family from Morocco, compound c.850_851delTTinsC and c.1742_1744delTGG heterozygous mutations were shown to be causative. This family had complex HSP with cerebellar impairment. Progression of the disease was rapid, resulting in a severe disease after 8 years of duration. Also detected were 20 families with one heterozygous mutation that was not found in a large control population. The mutations produced highly defective proteins in four of these families, suggesting that they were probably causative. Direct sequencing of all exons and reverse transcription PCR experiments demonstrated the absence of a second mutation. However, the p.Ala510Val missense substitution previously described as a polymorphism was shown to be significantly associated with HSP, suggesting that it had a functional effect.
Conclusion: SPG7 mutations account for less than 5% of hereditary spastic paraplegia (HSP) families compatible with autosomal recessive inheritance. Cerebellar signs or cerebellar atrophy on brain imaging were the most frequent additional features in patients with SPG7 HSP. Rare nucleotide variants in SPG7 are frequent, complicating routine diagnosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1212/01.wnl.0000201185.91110.15 | DOI Listing |
Hereditary spastic paraplegia (HSP) encompasses a group of rare genetic diseases primarily affecting motor neurons. Among these, spastic paraplegia type 11 (SPG11) represents a complex form of HSP caused by deleterious variants in the SPG11 gene, which encodes the spatacsin protein. Previous studies have described several potential roles for spatacsin, including its involvement in lysosome and autophagy mechanisms, neuronal and neurites development or mitochondria function.
View Article and Find Full Text PDFJ Genet Genomics
January 2025
Department of Medical Genetics and Center for Rare Diseases, the Second Affiliated Hospital of Zhejiang University School of Medicine, and Zhejiang Key Laboratory of Rare Diseases for Precision Medicine and Clinical Translation, Hangzhou, Zhejiang 310009, China; Nanhu Brain-computer Interface Institute, Hangzhou, Zhejiang 311100, China; MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310012, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai 200031, China; Lead contact. Electronic address:
Hereditary spastic paraplegias (HSPs) refer to a genetically and clinically heterogeneous group of neurodegenerative disorders characterized by the degeneration of motor neurons. To date, a significant number of patients still have not received a definite genetic diagnosis. Therefore, identifying unreported causative genes continues to be of great importance.
View Article and Find Full Text PDFAnn Clin Transl Neurol
January 2025
Department of Neurology, Movement Disorders Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
Uniparental isodisomy (UPiD) can cause mixed phenotypes of imprinting disorders and autosomal-recessive diseases. We present the case of a 3-year-old male with a blended phenotype of TECPR2-related hereditary sensory and autonomic neuropathy (HSAN9) and Temple syndrome (TS14) due to maternal UPiD of chromosome 14, which includes a loss-of-function founder variant in the TECPR2 gene [NM_014844.5: c.
View Article and Find Full Text PDFCureus
January 2025
Department of Internal Medicine, Section of Neurology, Chong Hua Hospital, Cebu, PHL.
Hereditary spastic paraplegia (HSP) is a rare neurodegenerative disease caused by retrograde degeneration of the corticospinal tract and posterior columns, which presents with progressive bilateral leg weakness and spasticity. HSP is inherited in an autosomal dominant pattern involving over 80 causative genes. The recently identified causative gene is the ubiquitin-associated protein 1 ()gene, which is associated with juvenile-onset pure spastic paraplegia-80 (SPG80).
View Article and Find Full Text PDFJ Clin Neurol
January 2025
Department of Neurology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine and Biomedical Research Institute, Yangsan, Korea.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!