Doxorubicin and ifosfamide are the two most active drugs in the treatment of patients with advanced, soft tissue sarcoma (STS) of most histologic subtypes, aside from gastrointestinal stromal tumor (GIST). However, after failure of these drugs, alone or in combination, patients with advanced STS have few therapeutic options and the search for new active drugs is well worth pursuing. ET-743, a DNA minor groove binder, which blocks cell cycle progression in G2/M phase through a p53-independent apoptotic process, represents the most promising among novel compounds in STS, since recently completed phase II trials have consistently shown high survival, in spite of the relatively low incidence of major objective responses. The potential for combination with other active compounds further increases the appeal of ET-743. Imatinib mesylate is being tested also in STS other than GIST, which can overexpress one or more of the tyrosine kinases inhibited by imatinib; however, negative data have recently been presented. Clinical studies with a number of other compounds are ongoing or planned. However, investigators involved in the management of patients with advanced STS are to be increasingly aware of the emergence of new molecular targets and genetic profiles in different histologic subtypes, according to which treatment strategies should be adapted.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.critrevonc.2005.12.002 | DOI Listing |
Medicine (Baltimore)
January 2025
Department of Gastroenterology, The Second Affiliated Hospital of Hainan Medical University, Haikou, China.
Inflammatory bowel disease is a chronic inflammatory condition predominantly affecting the intestines, encompassing both ulcerative colitis and Crohn disease (CD). As one of the most common gastrointestinal disorders, CD's pathogenesis is closely linked with the intestinal microbiota. Recently, fecal microbiota transplantation (FMT) has gained attention as a potential treatment for CD, with the effective reestablishment of intestinal microecology considered a crucial mechanism of FMT therapy.
View Article and Find Full Text PDFMedicine (Baltimore)
January 2025
Department of Hepatobiliary Surgery, The Third Central Hospital of Tianjin, Tianjin, China.
Background: In patients with advanced hepatocellular carcinoma (HCC) following sorafenib failure, regorafenib has been used as an initial second-line drug. It is unclear the real efficacy and safety of sorafenib-regorafenib sequential therapy compared to placebo or other treatment (cabozantinib or nivolumab or placebo) in advanced HCC.
Methods: Four electronic databases (PubMed, Embase, Web of Science, and Ovid) were systematically searched for eligible articles from their inception to July, 2024.
Medicine (Baltimore)
January 2025
Cardiovascular Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
Chronic coronary artery disease (CAD) remains a significant global healthcare burden. Current risk assessment methods have notable limitations in early detection and risk stratification. Hence, there is an urgent need for innovative biomarkers that facilitate the premature CAD diagnosis, ultimately leading to reduction in associated morbidity and mortality rates.
View Article and Find Full Text PDFMedicine (Baltimore)
January 2025
Department of Otolaryngology, Hangzhou Red Cross Hospital (Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine), Hangzhou, Zhejiang, China.
T-helper 17 (Th17) cells significantly influence the onset and advancement of malignancies. This study endeavor focused on delineating molecular classifications and developing a prognostic signature grounded in Th17 cell differentiation-related genes (TCDRGs) using machine learning algorithms in head and neck squamous cell carcinoma (HNSCC). A consensus clustering approach was applied to The Cancer Genome Atlas-HNSCC cohort based on TCDRGs, followed by an examination of differential gene expression using the limma package.
View Article and Find Full Text PDFAnal Chem
January 2025
Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, Fujian 350117, China.
Multiple myeloma is a hematologic malignancy characterized by the proliferation of abnormal plasma cells in the bone marrow. Despite therapeutic advancements, there remains a critical need for reliable, noninvasive methods to monitor multiple myeloma. Circulating plasma cells (CPCs) in peripheral blood are robust and independent prognostic markers, but their detection is challenging due to their low abundance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!