Involvement of brain protein kinase C in nitrous oxide-induced antinociception in mice.

Neuroscience

Department of Pharmacotherapeutics, Showa Pharmaceutical University, P.O. Box 3-3165, Higashitamagawagakuen, Tokyo 194-8543, Japan.

Published: June 2006

Exposure of mice to the anesthetic gas nitrous oxide (N(2)O) produces a marked antinociceptive effect. Protein kinase C is a key regulatory enzyme that may be targeted by general anesthetics. However, a relationship between N(2)O-induced antinociception and protein kinase C has yet to be established. The present study was conducted to identify whether protein kinase C might influence N(2)O-induced antinociception in mice. Regular exposure (11 min) to N(2)O produced concentration-dependent antinociception in mice, as determined using the abdominal constriction test. N(2)O-induced antinociception was attenuated by i.c.v. pretreatment with phorbol 12,13-dibutyrate, a protein kinase C activator. This phorbol 12,13-dibutyrate antagonism of N(2)O-induced antinociception was reversed by i.c.v. pretreatment with calphostin C, a protein kinase C inhibitor. Long-term exposure (41 min in total, including 30 min prior to, and 11 min of analgesic testing) to 70% N(2)O produced reduced analgesic effects, compared with regular exposure to 70% N(2)O, thus indicating acute tolerance to N(2)O-induced antinociception. However, mice pretreated with calphostin C, chelerythrine, which is another protein kinase C inhibitor, and phorbol 12,13-dibutyrate, did not develop acute tolerance. Regarding activation of protein kinase C, regular exposure to 70% N(2)O did not increase protein kinase C within the membrane fraction of brain tissue, as determined by immunoblot analysis, but long-term exposure to 70% N(2)O did. The i.c.v. pretreatment with calphostin C and phorbol 12,13-dibutyrate prevented the increase in protein kinase C observed with long-term exposure to 70% N(2)O. These results suggest that brain protein kinase C negatively regulates the antinociceptive effect of N(2)O, and that activation of brain protein kinase C is related to the development of acute tolerance to N(2)O-induced antinociception in mice.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroscience.2006.02.001DOI Listing

Publication Analysis

Top Keywords

protein kinase
48
n2o-induced antinociception
24
antinociception mice
20
70% n2o
20
phorbol 1213-dibutyrate
16
exposure 70%
16
protein
12
brain protein
12
kinase
12
regular exposure
12

Similar Publications

Purpose: The purpose of this review study is to investigate the effect of curcumin on the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway in various diseases. Curcumin, the main compound found in turmeric, has attracted a lot of attention for its diverse pharmacological properties. These properties have increased the therapeutic potential of curcumin in chronic diseases such as cardiovascular disease, Type 2 diabetes, obesity, non-alcoholic fatty liver disease, kidney disease, and neurodegenerative diseases.

View Article and Find Full Text PDF

Downregulation of MerTK in circulating T cells of patients with non-proliferative diabetic retinopathy.

Front Endocrinol (Lausanne)

January 2025

Department of Ophthalmology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China.

Objective: To explore the differential gene expression in peripheral blood immune cells of individuals with type 2 diabetes mellitus (DM), comparing those with and without non-proliferative diabetic retinopathy (NPDR).

Methods: From a pool of 126 potential participants, 60 were selected for detailed analysis. This group included 12 healthy donors (HDs), 22 individuals with DM, and 26 with NPDR.

View Article and Find Full Text PDF

Introduction: Triple-negative breast cancer (TNBC) is the most challenging subtype of breast cancer to treat. While previous studies have demonstrated that ginsenoside Rh2 induces apoptosis in TNBC cells, the specific molecular targets and underlying mechanisms remain poorly understood. This study aims to uncover the molecular mechanisms through which ginsenoside Rh2 regulates apoptosis and proliferation in TNBC, offering new insights into its therapeutic potential.

View Article and Find Full Text PDF

We previously reported that metformin, a widely prescribed antidiabetic drug, induces the accumulation of triglyceride (TG) together with the apoptotic death of H4IIE via AMP-activated protein kinase (AMPK) in hepatocellular carcinoma (HCC) cells. However, the effect of cytoplasmic fat accumulation on the growth of HCCs remains controversial. Herein, we investigated the effect of fatty acid synthase (FASN) inhibitors on the basal- or metformin-induced changes including the content of cytoplasmic TG and the viability of HCC cells.

View Article and Find Full Text PDF

Background: Neuronal structure is disrupted after spinal cord injury (SCI), causing functional impairment. The effectiveness of exercise therapy (ET) in clinical settings for nerve remodeling post-SCI and its underlying mechanisms remain unclear. This study aims to explore the effects and related mechanisms of ET on nerve remodeling in SCI rats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!