Transposable genetic elements are abundant in the genomes of most organisms, including humans. These endogenous mutagens can alter genes, promote genomic rearrangements, and may help to drive the speciation of organisms. In this study, we identified almost 11,000 transposon copies that are differentially present in the human and chimpanzee genomes. Most of these transposon copies were mobilized after the existence of a common ancestor of humans and chimpanzees, approximately 6 million years ago. Alu, L1, and SVA insertions accounted for >95% of the insertions in both species. Our data indicate that humans have supported higher levels of transposition than have chimpanzees during the past several million years and have amplified different transposon subfamilies. In both species, approximately 34% of the insertions were located within known genes. These insertions represent a form of species-specific genetic variation that may have contributed to the differential evolution of humans and chimpanzees. In addition to providing an initial overview of recently mobilized elements, our collections will be useful for assessing the impact of these insertions on their hosts and for studying the transposition mechanisms of these elements.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1424692PMC
http://dx.doi.org/10.1086/501028DOI Listing

Publication Analysis

Top Keywords

human chimpanzee
8
chimpanzee genomes
8
transposon copies
8
humans chimpanzees
8
chimpanzees years
8
insertions
5
mobilized transposons
4
transposons human
4
genomes transposable
4
transposable genetic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!