Objective: To investigate the adhesive properties of bone marrow stromal cell (BMSC) on the hydroxyapatite (HA) particles and analyze their behavior.
Methods: The study took place in the Department of the Histology and Embryology, Celal Bayar University, Manisa and in the Department of Bioengineering, Ege University, Izmir, Turkey between 2004 and 2005. We cultured BMSC from the mature rat tibia and differentiated to the osteoblasts by osteogenic medium. The BMSCs were subcultured and were taken to the HA substrate. We measured their proliferation capacity and viability with MTT assay using the spectrophotometric method. Furthermore, we identified the osteoblast-like cells by immunohistochemical staining of osteonectin and osteocalcin and we analyzed the behavior of the cells on different sized HA particles by SEM at the end of 3 days incubation.
Results: Osteogenic medium caused the proliferation capacity of BMSC to speed up and the effects appeared earlier. We confirmed the osteoblastic differentiation by staining of most cells with osteoblastic markers. Subcultured cells were similarly adhesive to the HA particles and the osteogenic medium did not alter this behavior. They spread on the substrate similarly. Most of the cells demonstrated the cytoplasmic protrusion. Morphology of the cells did not change much with or without osteogenic medium. Different sizes of HA particles did not affect the adhesive properties of these cells except HA gel. The spreading and attachment ratios of the cells on HA gel were more than the others
Conclusion: We found that there was heterogeneity in BMSC on differentiation capacity to the osteoblast, which was a sign of a subpopulation. Adhesive cells showed similar morphology and behavior under the effect of osteogenic medium. The only difference was the spreading capacity on the HA gel where cell used this substrate more effectively for adhesion.
Download full-text PDF |
Source |
---|
ACS Omega
January 2025
Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
Incorporating zinc into biocompatible materials has been identified as a potential strategy for promoting bone regeneration and osteogenic activity during hard tissue regeneration. This work aimed to investigate the impact of zinc doping on the structure of akermanite, which was synthesized using the sol-gel combustion method, with the goal of improving the biological response. Powder XRD and FT-IR analysis confirmed the phase purity and the respective functional groups associated with Zn-doped akermanite.
View Article and Find Full Text PDFEur J Oral Sci
January 2025
Department of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeonju-si, South Korea.
The periodontal ligament (PDL) is a connective tissue, and PDL cells have a potential to differentiate into cementoblasts, osteoblasts, and gingival fibroblasts. This study investigated whether transcription factor c-Myb could induce differentiation of PDL cells for periodontal regeneration. PDL cells were isolated from extracted teeth and cultured.
View Article and Find Full Text PDFEnviron Toxicol
January 2025
Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India.
The presence of high levels of fluoride (F) in groundwater is a major issue worldwide. Although F is essential for healthy teeth and bones, excessive exposure can cause fluorosis or F toxicity. This condition primarily affects the hard tissues due to their high F retention capacity.
View Article and Find Full Text PDFCytotherapy
January 2025
Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain. Electronic address:
Background/aims: Human mesenchymal stromal cells (hMSC) are multipotent adult cells commonly used in regenerative medicine as advanced therapy medicinal products. The expansion of these cells in xeno-free supplements is highly encouraged by regulatory agencies due to safety concerns. However, the number of supplements with robust performance and consistency for hMSC expansion are limited.
View Article and Find Full Text PDFJ Adv Res
January 2025
Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, National Clinical Research Center for Oral Diseases, 22 Zhongguancun South Avenue, Beijing 100081, China. Electronic address:
Introduction: Periodontal diseases are prevalent among middle-aged and elderly individuals. There's still no satisfactory solution for tooth loss caused by periodontal diseases. Human periodontal ligament stem cells (hPDLSCs) is a distinctive subgroup of mesenchymal stem cells, which play a crucial role in periodontal supportive tissues, but their application value hasn't been fully explored yet.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!