The CD34(+) human acute myeloid leukemia-derived cell line MUTZ-3 is dependent on hematopoietic growth factors for its proliferation and is able to differentiate into dendritic cells (DCs) in response to the combination of granulocyte-macrophage colony-stimulating factor, interleukin-4, and tumor necrosis factor-alpha. This cell line carries human leukocyte antigen (HLA)-A2.1, HLA-A3, and HLA-B44, which cover most of the caucasian population, and it could therefore be used as an off-the-shelf allogeneic DC-based vaccine. Signal transduction and activation of transcription (STAT) 5b is involved in cytokine signal transduction, particularly of cytokines involved in DC precursor growth and differentiation. The constitutively active form of STAT5b induced cytokine-independent growth of MUTZ-3 cells. Furthermore, STAT5b-transduced cells differentiated into mature DCs in 3 to 4 days after stimulation with DC differentiation-inducing cytokines, reducing the culture period to obtain mature DCs with 5 days compared with unmodified MUTZ-3-derived mature DC cultures. Both DC types expressed DC maturation markers and were equally effective in inducing primary T-cell responses. DCs derived from the STAT5b-transduced cells had a more stable mature phenotype after cytokine deprivation, which was reflected in a better performance in functional assays. In conclusion, these results show that STAT5b-transduced MUTZ-3 can be propagated in cytokine-free medium and rapidly differentiated into functional mature DCs that sustain a mature phenotype over a period of 3 to 5 days in the absence of differentiation-inducing cytokines. The simplified propagation and rapid differentiation into mature DCs may facilitate clinical application of this cell line as an allogeneic DC-based vaccine.

Download full-text PDF

Source
http://dx.doi.org/10.1097/01.cji.0000197095.00359.67DOI Listing

Publication Analysis

Top Keywords

mature dcs
16
constitutively active
8
cytokine-independent growth
8
acute myeloid
8
myeloid leukemia-derived
8
mature
8
differentiation mature
8
dendritic cells
8
allogeneic dc-based
8
dc-based vaccine
8

Similar Publications

Hepatocellular carcinoma (HCC) is a highly prevalent malignancy with limited treatment efficacy despite advances in immune checkpoint blockade (ICB) therapy. The inherently weak immune responses in HCC necessitate novel strategies to improve anti-tumor immunity and synergize with ICB therapy. Kinesin family member 20A (KIF20A) is a tumor-associated antigen (TAA) overexpressed in HCC, and it could be a promising target for vaccine development.

View Article and Find Full Text PDF

Bioactive microspheres to enhance sonodynamic-embolization-metalloimmune therapy for orthotopic liver cancer.

Biomaterials

December 2024

Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China. Electronic address:

The development of novel microspheres for the combination of sonodynamic therapy (SDT) with transarterial embolization (TAE) therapy to amplify their efficacy has received increasing attention. Herein, a novel strategy for encapsulating sonosensitizers (e.g.

View Article and Find Full Text PDF

Glutathione-Responsive Metal-Organic-Framework-Derived MnO/(A/R)TiO Nanoparticles for Enhanced Synergistic Sonodynamic/Chemodynamic/Immunotherapy.

ACS Nano

January 2025

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China.

Despite the potential of sonodynamic therapy (SDT) in treating malignant tumors, the lack of effective sonosensitizers has limited its clinical implementation. In this study, we explored the relationship between the heteroatom doping concentration in metal-organic frameworks and interface formation after pyrolysis by regulating the addition of manganese sources and successfully derived Z-scheme heterojunctions MnO/(A/R)TiO (MTO) in situ from MIL-125-NH (Ti/Mn). The electron transfer pathway introduced by interfacial contact promoted carrier separation and greatly preserved the effective redox components, significantly influencing the performance of reactive oxygen species generation.

View Article and Find Full Text PDF

Vaccines targeting p53 mutants elicit anti-tumor immunity.

Cancer Lett

December 2024

Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA. Electronic address:

The p53 tumor suppressor is commonly mutated in cancer; however, there are no effective treatments targeting p53 mutants. A DNA vaccine gWIZ-S237G targeting the p53 S237G mutant, which is highly expressed in A20 murine tumor cells, was developed and administered intramuscularly via electroporation, either alone or in combination with PD-1 blockade. The anti-p53-S237G immunization elicited a robust protective response against subcutaneous A20 tumors and facilitated the infiltration of immune cells including CD8 T cells, NK cells, and DCs.

View Article and Find Full Text PDF

Reduced irradiation exposure areas enhanced anti-tumor effect by inducing DNA damage and preserving lymphocytes.

Mol Med

December 2024

State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing, 100871, China.

Background: Partial stereotactic body radiation therapy (SBRT) targeting hypoxic regions of large tumors (SBRT-PATHY) has been shown to enhance the efficacy of tumor radiotherapy by harnessing the radiation-induced immune response. This approach suggests that reducing the irradiation target volume not only achieves effective anti-tumor effects but also minimizes damage to surrounding normal tissues. In this study, we evaluated the antitumor efficacy of reduced-tumour-area radiotherapy (RTRT) , and explored the relationship between tumor control and immune preservation and the molecular mechanisms underlying of them.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!