Recent studies have revealed a second class of gap-junction-forming proteins in vertebrates. These genes are termed pannexins, and it has been suggested that they perform similar functions as connexins. Pannexin1 is expressed in diverse tissues including the central nervous system and seems to form gap junction channels in the Xenopus oocyte expression system. Since protein interacting partners have frequently been described for connexins, the most prominent family of gap junction forming proteins, we thus started to search for candidate genes of pannexin interacting partners. Kvbeta3, a protein belonging to the family of regulatory beta-subunits of the voltage-dependent potassium channels, was identified as a binding partner of pannexin1 in an E. coli two-hybrid system. This result was verified by confocal laser scanning microscopy using double transfected Neuro2A cells. The colocalization of both proteins at the plasma membrane is suggestive of functional interaction.

Download full-text PDF

Source
http://dx.doi.org/10.1080/15419060500511834DOI Listing

Publication Analysis

Top Keywords

gap junction
12
interacting partners
8
identification potential
4
potential regulator
4
regulator gap
4
junction protein
4
protein pannexin1
4
pannexin1 studies
4
studies revealed
4
revealed second
4

Similar Publications

Cell-to-cell communications are desirable for efficient functioning in endocrine cells. Gap junctions and paracrine factors are major mechanisms by which neighboring endocrine cells communicate with each other. The current experiment was undertaken to morphologically examine gap junction expression and developmental changes in rat adrenal medullary chromaffin (AMC) cells.

View Article and Find Full Text PDF

Background: Charcot-Marie-Tooth (CMT) disease is the most common inherited neuropathy. In this study, we aimed to analyze the genetic spectrum and describe phenotypic features in a large cohort from Türkiye.

Methods: Demographic and clinical findings were recorded.

View Article and Find Full Text PDF

Recent experimental studies showed that electrically coupled neural networks like in mammalian inferior olive nucleus generate synchronized rhythmic activity by the subthreshold sinusoidal-like oscillations of the membrane voltage. Understanding the basic mechanism and its implication of such phenomena in the nervous system bears fundamental importance and requires preemptively the connectome information of a given nervous system. Inspired by these necessities of developing a theoretical and computational model to this end and, however, in the absence of connectome information for the inferior olive nucleus, here we investigated interference phenomena of the subthreshold oscillations in the reference system for which the structural anatomical connectome was completely known recently.

View Article and Find Full Text PDF

The World Health Organization has classified air pollution as a carcinogen, and polycyclic aromatic hydrocarbons (PAHs) are major components of air particulates of carcinogenic concern. Thus far, most studies focused on genotoxic high molecular weight PAHs; however, recent studies indicate potential carcinogenicity of the non-genotoxic lower molecular weight PAHs (LMW PAHs) that are found in indoor and outdoor air pollution as well as secondhand cigarette smoke. We hypothesize that LMW PAHs contribute to the promotion stage of cancer when combined with benzo[]pyrene (B[]P), a legacy PAH.

View Article and Find Full Text PDF

Inhibitory Effects of Cenobamate on Multiple Human Cardiac Ion Channels and Possible Arrhythmogenic Consequences.

Biomolecules

December 2024

Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania.

Cenobamate is a novel third-generation antiepileptic drug used for the treatment of focal onset seizures and particularly for multi-drug-resistant epilepsy; it acts on multiple targets: GABA receptors (EC 42-194 µM) and persistent neuronal Na currents (IC 59 µM). Side effects include QT interval shortening with >20 ms, but not <300 ms. Our in vitro cardiac safety pharmacology study was performed via whole-cell patch-clamp on HEK293T cells with persistent/inducible expression of human cardiac ion channel isoforms hNav1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!