Two sequencing batch reactors (SBRs) instantaneously fed with 200 mg/l 4-chlorophenol (4-CP) were operated at different feed peptone concentrations to investigate the effect of biogenic substrate (peptone) concentrations on reactor performance, yield coefficient (Y) and 4-CP degradation kinetics. One of the reactors was operated at 10 days of sludge retention time (SRT) and the other was operated at 20 days of SRT. High chemical oxygen demand (COD) removal efficiencies (90-95%) and complete 4-CP removals (detection limit was 0.05 mg/l) were observed even in the absence of peptone. Accumulation of 5-chloro-2-hydroxymuconic semialdehyde (CHMS), meta cleavage product of 4-CP, was observed, which was completely removed at the end of the reactor cycle. It was concluded that decreasing peptone concentrations did not affect 4-CP degradation profiles and Haldane equation can be satisfactorily used to predict time course variation of 4-CP concentrations. It was assumed that specialists (competent biomass) are only responsible for 4-CP degradation and its concentration was constant although peptone concentration in the feed was varied, as competent biomass grows on 4-CP only. Model developed using this assumption well tracked the experimental data. The kinetic coefficients obtained for the reactor operated at 10 days of SRT were also valid for the reactor operated at 20 days of SRT although higher degradation rates were observed due to higher steady state biomass concentrations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2006.01.069DOI Listing

Publication Analysis

Top Keywords

operated days
16
peptone concentrations
12
4-cp degradation
12
days srt
12
biogenic substrate
8
degradation kinetics
8
sequencing batch
8
batch reactors
8
4-cp
8
competent biomass
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!