We studied the distribution of NADPH-diaphorase (NADPH-d) activity in the prefrontal cortex of normal adult Cebus apella monkeys using NADPH-d histochemical protocols. The following regions were studied: granular areas 46 and 12, dysgranular areas 9 and 13, and agranular areas 32 and Oap. NADPH-d-positive neurons were divided into two distinct types, both non-pyramidal. Type I neurons had a large soma diameter (17.24 +/- 1.73 microm) and were densely stained. More than 90% of these neurons were located in the subcortical white matter and infragranular layers. The remaining type I neurons were distributed in the supragranular layers. Type II neurons had a small, round or oval soma (9.83 +/- 1.03 microm), and their staining pattern varied markedly. Type II neurons were distributed throughout the cortex, with their greatest numerical density being observed in layers II and III. In granular areas, the number of type II neurons was up to 20 times that of type I neurons, but this proportion was smaller in agranular areas. Areal density of type II neurons was maximum in the supragranular layers of granular areas and minimum in agranular areas. Statistical analysis revealed that these areal differences were significant when comparing some specific areas. In conclusion, our results indicate a predominance of NADPH-d-positive cells in supragranular layers of granular areas in the Cebus prefrontal cortex. These findings support previous observations on the role of type II neurons as a new cortical nitric oxide source in supragranular cortical layers in primates, and their potential contribution to cortical neuronal activation in advanced mammals.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainres.2006.01.098DOI Listing

Publication Analysis

Top Keywords

type neurons
32
granular areas
16
prefrontal cortex
12
agranular areas
12
supragranular layers
12
neurons
11
areas
9
type
8
neurons distributed
8
layers granular
8

Similar Publications

Corticospinal motor neurons (CSMN), located in the motor cortex of the brain, are one of the key components of the motor neuron circuitry. They are in part responsible for the initiation and modulation of voluntary movement, and their degeneration is the hallmark for numerous diseases, such as amyotrophic lateral sclerosis (ALS), hereditary spastic paraplegia, and primary lateral sclerosis. Cortical hyperexcitation followed by in-excitability suggests the early involvement of cortical dysfunction in ALS pathology.

View Article and Find Full Text PDF

A male in his 20s presented with episodic headache and subsequently developed episodic unilateral weakness, dysphasia and encephalopathy. These paroxysmal episodes persisted over time with the development of background cognitive impairment and neuropsychiatric symptoms. MRI surveillance demonstrated progressive T2 hyperintensity with focal cortical oedema correlating to symptoms observed during clinical episodes.

View Article and Find Full Text PDF

Fragile X autosomal homolog 1 (FXR1), a member of the fragile X messenger riboprotein 1 family, has been linked to psychiatric disorders including autism and schizophrenia. Parvalbumin (PV) interneurons play critical roles in cortical processing, and have been implicated in FXR1-linked mental illnesses. Targeted deletion of FXR1 from PV interneurons in mice has been shown to alter cortical excitability and elicit schizophrenia-like behavior.

View Article and Find Full Text PDF

Dapagliflozin ameliorates Lafora disease phenotype in a zebrafish model.

Biomed Pharmacother

January 2025

IRCCS Stella Maris Foundation, Calambrone, via dei Giacinti 2, Pisa 56128, Italy.

Lafora disease (LD) is an ultra-rare and still incurable neurodegenerative condition. Although several therapeutic strategies are being explored, including gene therapy, there are currently no treatments that can alleviate the course of the disease and slow its progression. Recently, gliflozins, a series of SGLT2 transporter inhibitors approved for use in type 2 diabetes mellitus, heart failure and chronic kidney disease, have been proposed as possible repositioning drugs for the treatment of LD.

View Article and Find Full Text PDF

To study the neuronal protective effect and its potential mechanism of C16 against gp120-induced cognitive impairment in vitro and in vivo. The NORT method was used to evaluate the short-term memory abilities of rats, the morphological changes in hippocampus were observed by Nissl staining. Cell viability and damage degree were detected by MTT and LDH.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!