Previously, we and others have shown that CCAAT displacement protein (CDP) negatively regulates the papillomavirus promoters. Overexpression of CDP has been shown to inhibit high-risk human papillomavirus virus (HPV) and bovine papillomavirus DNA replication in vivo presumably through reduction in expression of viral replication proteins, E1 and E2. Sequence analysis of the HPV origin indicates several potential CDP-binding sites with one site overlapping the E1-binding site. Therefore, CDP could also negatively regulate papillomavirus replication directly by preventing the loading of the initiation complex. We show here that purified CDP inhibits in vitro HPV DNA replication. Footprint analysis demonstrated that CDP binds the E1-binding site and the TATA box, and that the binding of purified CDP to the E1-binding site is decreased by the addition of purified E2 protein. Consistent with this, E2-independent in vitro HPV replication is inhibited by CDP to a greater extent than E2-dependent replication. These results suggest that binding of E2 at the E2-binding site may play an important role in overcoming the inhibition of E1 initiation complex formation caused by the binding of negative regulators like CDP to the origin of replication.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.virol.2006.01.047DOI Listing

Publication Analysis

Top Keywords

dna replication
12
e1-binding site
12
replication
9
ccaat displacement
8
displacement protein
8
human papillomavirus
8
origin replication
8
cdp
8
cdp negatively
8
initiation complex
8

Similar Publications

Deciphering the fate of replication-induced DNA double-strand breaks.

Mol Cell

January 2025

Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.

In this issue of Molecular Cell, studies by Xu et al., Kimble et al., and Elango et al.

View Article and Find Full Text PDF

NUFIP1 integrates amino acid sensing and DNA damage response to maintain the intestinal homeostasis.

Nat Metab

January 2025

Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; School of Basic Medical Sciences, Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; Shanghai Key Laboratory of Radiation Oncology; the Shanghai Key Laboratory of Medical Epigenetics, State Key Laboratory of Medical Neurobiology, Shanghai Medical College, Fudan University, Shanghai, China.

Nutrient availability strongly affects intestinal homeostasis. Here, we report that low-protein (LP) diets decrease amino acids levels, impair the DNA damage response (DDR), cause DNA damage and exacerbate inflammation in intestinal tissues of male mice with inflammatory bowel disease (IBD). Intriguingly, loss of nuclear fragile X mental retardation-interacting protein 1 (NUFIP1) contributes to the amino acid deficiency-induced impairment of the DDR in vivo and in vitro and induces necroptosis-related spontaneous enteritis.

View Article and Find Full Text PDF

Nucleosome is the basic structural unit of the genome. During processes like DNA replication and gene transcription, the conformation of nucleosomes undergoes dynamic changes, including DNA unwrapping and rewrapping, as well as histone disassembly and assembly. However, the wrapping characteristics of nucleosomes across the entire genome, including region-specificity and their correlation with higher-order chromatin organization, remains to be studied.

View Article and Find Full Text PDF

Human cytomegalovirus (HCMV) is a common herpesvirus that can severely affect transplant recipients, those with AIDS, and newborns. Existing synthetic medications face limitations, including toxicity, processing issues, and viral resistance. As part of this study, the efficacy of the extracellular enzyme laccase isolated from a widely available mushroom (Pleurotus pulmonarius) was compared to that of ganciclovir, a common antiviral, used against HCMV.

View Article and Find Full Text PDF

Hepatitis B virus hijacks MRE11-RAD50-NBS1 complex to form its minichromosome.

PLoS Pathog

January 2025

State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School, Wuhan University, Wuhan, China.

Chronic hepatitis B virus (HBV) infection can significantly increase the incidence of cirrhosis and liver cancer, and there is no curative treatment. The persistence of HBV covalently closed circular DNA (cccDNA) is the major obstacle of antiviral treatments. cccDNA is formed through repairing viral partially double-stranded relaxed circular DNA (rcDNA) by varies host factors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!