Coordination of N,N' bidentate ligands aryl-pyridin-2-ylmethyl-amine ArNH-CH2-2-C5H4N 1 (Ar = 4-CH3-C6H4, 1a; 4-CH3O-C6H4, 1b; 2,6-(CH3)2-C6H3, 1c; 4-CF3-C6H4, 1d) to the moieties [Ru(bipy)2]2+, [Ru(eta5-C5H5)L]+ (L = CH3CN, CO), or [Ru(eta6-arene)Cl]2+ (arene = benzene, p-cymene) occurs under diastereoselective or diastereospecific conditions. Detailed stereochemical analysis of the new complexes is included. The coordination of these secondary amine ligands activates their oxidation to imines by molecular oxygen in a base-catalyzed reaction and hydrogen peroxide was detected as byproduct. The amine-to-imine oxidation was also observed under the experimental conditions of cyclic voltammetry measurements. Deprotonation of the coordinated amine ligands afforded isolatable amido complexes only for the ligand (1-methyl-1-pyridin-2-yl-ethyl)-p-tolyl-amine, 1e, which doesn't contain hydrogen atoms in a beta position relative to the N-H bond. The structures of [Ru(2,2'-bipyridine)2(1b)](PF6)2, 2b; [Ru(2,2'-bipyridine)(2)(1c)](PF6)2, 2c; trans-[RuCl2(COD)(1a)], 3; and [RuCl2(eta6-C6H6)(1a)]PF6, 4a, have been confirmed by X-ray diffraction studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic051590a | DOI Listing |
Molecules
November 2024
Instituto de Química-UNAM, Circuito Exterior, C.U. Coyoacán, Mexico City C.P. 04510, Mexico.
Four mononuclear bioefficient zinc coordination complexes [Zn(NN)](ClO) (-) involving chiral bidentate Schiff base ligands have been synthesized and characterized by IR, H, and C NMR spectroscopy and mass spectrometry. X-ray crystal structures of three of the zinc complexes revealed that the zinc metal ion is hexacoordinated, exhibiting a distorted octahedral geometry where both the nitrogen atoms (NN = pyridyl and imine) of imines are coordinated to the central zinc ion. The isolated zinc complexes were evaluated for their antimicrobial activity in vitro against , , and , displaying varying levels of growth inhibition.
View Article and Find Full Text PDFDalton Trans
December 2024
Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, India.
Electrochemical water oxidation holds immense potential for sustainable energy generation, splitting water into clean-burning hydrogen and life-giving oxygen. However, a key roadblock lies in the sluggish nature of the oxygen evolution reaction (OER). Finding stable, cost-effective, and environmentally friendly catalysts with high OER efficiency is crucial to unlock this technology's full potential.
View Article and Find Full Text PDFJ Org Chem
December 2024
State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130021, China.
Silyl-phenanthroline (NN'Si) ligand ancillary iridium-catalyzed C(sp)-H borylation is investigated theoretically. Density functional theory calculations clearly disclose that the (NN'Si)Ir(H)(Bpin) (NN'Si = 6-[(di--butylsilyl)methyl]-1,10-phenanthroline) complex is a resting state, and the (NN'Si)Ir(Bpin) complex serves as an active species in the catalytic cycle. The remarkably high activity of this type of a catalyst arises from the rapid reductive elimination of HBpin from (NN'Si)Ir(H)(Bpin) to generate the active species (NN'Si)Ir(Bpin).
View Article and Find Full Text PDFChem Asian J
November 2024
Department of Chemistry, St. Xavier's College (Autonomous), Kolkata, 700016, India.
The bidentate N, N, donor phenyl-azo-naphthaldoxime NpLH, 1 was used to synthesize the ruthenium(II) complex trans-[Ru(NpL)(CO)Cl(PPh)], 2. It has been characterized by SCXRD, electrochemical and spectral studies. Computational analysis indicates that the low-lying π*-LUMO of the complex has substantial azo-character of coordinated ligand.
View Article and Find Full Text PDFInorg Chem
December 2024
Centro de Química Estrutura, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal.
In this study, we report the synthesis and full characterization of five novel ruthenium(II) cymene complexes with the general formula [Ru(cym)(L')Cl], featuring N,O- and N,N-coordinating pyrazolone-based hydrazone ligands. We have characterized these complexes using single X-ray crystallography, Fourier-transform infrared spectroscopy (FT-IR), Nuclear magnetic resonance (NMR), elemental analysis, and Electrospray Ionization Mass Spectroscopy (ESI-MS). Crystallographic analysis confirmed that all of the complexes have a similar type of half-sandwich, pseudo-octahedral "three-legged piano-stool" geometry where the cymene moiety displays the typical η-coordination mode and the hydrazone ligands coordinate to the Ru(II) center in a bidentate fashion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!