In this article we present the synthesis of oil core silica shell nanocapsules with different shell thicknesses. The surface of the nanocapsules was modified with polyethyleoxide (PEO) and succinic anhydride. Two biomedical tests were then used to study the biocompatibility properties of these nanocapsules with different surface treatments, hemolysis and thromboelastography (TEG). PEO surface modification greatly reduced the damaging interactions of nanocapsules with red blood cells (RBCs) and platelets and attenuated particle size effects. It was found that the blood toxicity of charged particles increased with the acid strength on the surface. Experiments toward the assessment of detoxification of these nanocapsules in model drug overdose concentrations are currently underway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bm050820+ | DOI Listing |
Microbiome
January 2025
Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
Background: Huge phages (genome size ≥ 200 kb) have been detected in diverse habitats worldwide, infecting a variety of prokaryotes. However, their evolution and adaptation strategy in soils remain poorly understood due to the scarcity of soil-derived genomes.
Results: Here, we conduct a size-fractioned (< 0.
Anal Sci
January 2025
MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, People's Republic of China.
As one of the most harmful heavy metal pollutants, hexavalent chromium Cr(VI) is becoming a serious threat to human health. Thus pursuing a remarkably sensitive method to monitor the Cr(VI) concentration in natural conditions is favored for the fast response to prevent harm. In the present work, an ethylenediamine (En) and SiO-modified wool keratin-based carbon quantum dot (CQD)(En@CQDs@SiO) fluorescent sensor is prepared, and the En is found to improve the discrimination ability by binding the Cr(VI) with the surface carboxyl groups.
View Article and Find Full Text PDFACS Nano
January 2025
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China.
Electron transfer is ubiquitous in many chemical reactions and biological phenomena; however, the spatial heterogeneities of electron transfer kinetics in electrocatalysis are so far insufficiently resolved. Measuring and understanding the localized electron transfer are crucial to deciphering the intrinsic activity of electrocatalysts and to achieving further improvements in performance. By using scanning electrochemical probe microscopy to spatially resolve redox electrochemistry across the single-crystalline surface of gold microplates, we discover an intriguing radially distributed electron transfer pattern, where the kinetics around the periphery region are significantly higher than those at the central region, regardless of the redox reaction types.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, Hunan, China.
The development of efficient immobilization support for the enhancement of enzyme activity and recyclability is a highly desirable objective. Single-crystalline ordered macro-microporous ZIF-8 (SOM-ZIF-8), has emerged as a highly effective matrix for enzyme immobilization, however, the inherent hydrophobic nature limits its further advancement. Herein, we have customized the immobilization of the Pseudomonas cepacia lipase (LP) in the modification-channels of SOM-ZIF-8 by functionalizing the inner surface-properties with polyethylene glycol (PEG) (LP@SOM-ZIF-8-PEG), and significant enhancement of the activity and (thermal, solvent and cyclic) stability can be realized.
View Article and Find Full Text PDFFood Chem
January 2025
School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, China. Electronic address:
Potato protein has attracted much attention due to its unique nutritional and structural properties. In this study, the twin-screw extrusion technology was employed to modify potato protein, while the modification mechanism was investigated from the perspective of temperature variation. Results indicated that extruded potato protein (EPP) led to the extremely significantly decreased surface hydrophobicity (1350 to 307-396) and foaming capacity (41.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!