Cooking and sensory properties of rice are largely determined by the amylose content and structure. For relationships between functional and structural properties, a more accurate method to determine the structure of amylose is required. Here we calibrate size exclusion chromatography (SEC) columns, using Mark-Houwink parameters for linear starch and pullulan standards, to obtain the true molecular weight distribution of linear starch. When the molecular weight distribution is reported relative to pullulan, rather than the actual molecular weight which is readily obtained from universal calibration, it is seen that the molecular weights of longer amylose chains are greatly underestimated. We validate the SEC method to enable the measurement of the hydrodynamic volume distribution of the starch by examining reproducibility and recovery. Analysis of the starch in the sample pre- and post-SEC shows that 20% of the carbohydrate is not recovered. Comparison of the weight-average degree of polymerization, X(w), of (undebranched) starch of pre- and post-SEC is made using iodine binding as well as Berry plots of data from multi-angle laser light scattering (MALLS). These both show that current SEC techniques for starch analysis lead to significant loss of high molecular weight material. Indeed, for the systems studied here, the values for X(w) after SEC are about three times lower than those before SEC. Iodine-starch complexes of pre- and post-SEC samples reveals that the SEC techniques give reliable data for the amylose fraction but not for amylopectin. We address reports in the literature suggesting that the conventional isoamylase method for debranching starch would lead to incomplete debranching and thus incorrect molecular weight distributions. However, it is shown using (1)H NMR that isoamylase can completely debranch the amylose (to within the detection limit of 0.5%), and by SEC that successive incubation with isoamylase, alpha-amylase, and beta-amylase can degrade the amylose-rich fraction completely to maltose. We develop a method to obtain a hot water soluble fraction (HWSF), rich in undamaged amylose molecules, directly from rice flour, avoiding the structural degradation of previous techniques. With appropriate sample handling, the formation of associations between starch chains is minimized. With the combination of calibrated and validated SEC methods, and an improved extraction of amylose from rice, the X(w) for both HWSF and debranched HWSF are found to be much larger than has previously been reported.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bm050617e | DOI Listing |
PeerJ
January 2025
College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China.
Background: Geraniol 10-hydroxylase (G10H) is a cytochrome P450 monooxygenase involved in regulation, which is involved in the biosynthesis of monoterpene. However, G10H is not characterized at the enzymatic mechanism and regulatory function in .
Methods And Results: A gene related to the biosynthesis of monoterpenoid, geraniol 10-hydroxylase, has been cloned from the medicinal plant .
3 Biotech
February 2025
Centre for Research in Biotechnology for Agriculture (CEBAR), Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
Unlabelled: Orphan genes (OGs), also known as lineage-specific genes, are species-specific genes that play a crucial role in species-specific adaptations to various stresses. Although OGs have been identified in several plant species, there is no information on OGs in banana genomes. This study aimed to systematically identify OGs in twelve banana (sub)species using comparative genomics.
View Article and Find Full Text PDFPlant Biotechnol J
January 2025
Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, China.
Phosphorus (P) is an essential yet frequently deficient plant nutrient. Optimizing P distribution and recycling between tissues is vital for improving P utilization efficiency (PUE). Yet, the mechanisms underlying the transport and re-translocation of P within plants remain unclear.
View Article and Find Full Text PDFMacromol Rapid Commun
January 2025
School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore.
A series of biomass-based linear aliphatic polyesters are synthesized by combining sebacic acid (SA) (C10 diacid) and 1,18-octadecanedioic acid (OA) (C18 diacid) with a series of diols with varied alkyl chain lengths (C2 to C10 diols). SA and OA are obtainable from castor oil and palm oil, respectively. The reaction extent (polymerization extent) is high (≥96%) in all cases, and the number-average molecular weight (M) is 10 000-43 000 g mol after purification.
View Article and Find Full Text PDFSmall
January 2025
Anhui Provincial Key Laboratory of Advanced Catalysis and Energy Materials, Anhui Ultra High Molecular Weight Polyethylene Fiber Engineering Research Center, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing, 246133, P. R. China.
The catalytic conversion of CO into valuable chemicals using metalized covalent organic frameworks (COFs) as catalysts is a promising method for reducing atmospheric CO levels. Herein, a aldehyde-amine COF (TAPT-Tp) at room temperature and pressure and their metallized results is synthesized, Ni-TAPT-Tp and Ti-TAPT-Tp. The photocatalytic results indicate that the CO to CO reduction rate is 6182.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!