The electrospinning of polymer melts can offer an advantage over solution electrospinning, in the development of layered tissue constructs for tissue engineering. Melt electrospinning does not require a solvent, of which many are cytotoxic in nature, and the use of nonwater soluble polymers allows the collection of fibers on water or onto cells. In this article, melt electrospinning of a blend of PEO-block-PCL with PCL was performed with in vitro cultured fibroblasts as the collection target. The significant parameters governing electrospinning polymer melts were determined before electrospinning directly onto fibroblasts. In general, a high electric field resulted in the most homogeneous and smallest fibers, although it is important that an optimal pump rate to the spinneret needs to be determined for different configurations. Many parameters governing melt electrospinning differ to those reported for solution electrospinning: the pump rate was a magnitude lower and the viscosity a magnitude higher than successful parameters for solution electrospinning. Cell vitality was maintained throughout the electrospinning process. Six days after electrospinning, fibroblasts adhered to the electrospun fibers and appeared to detach from the underlying flat substrate. The morphology of the fibroblasts changed from spread and flat, to long and spindle-shaped as adherence onto the fiber progressed. Therefore, an important step for producing layer-on-layer tissue constructs of cells and polymers in view of scaffold construction for tissue engineering was successfully demonstrated. The process of using cultured cells as the collection target was termed "direct in vitro electrospinning".
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bm050777q | DOI Listing |
Sci Rep
January 2025
Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
This study investigates the potential of zinc oxide (ZnO) and Ag-doped zinc oxide (Ag-ZnO) nanoparticles (NPs) (1, 3 and 5 wt%) electrospun into poly(vinylidene fluoride) (PVDF) based triboelectric nanogenerators (TENGs) to harness electrical energy from ambient mechanical vibrations. ZnO and Ag-ZnO NPs were developed using a co-precipitation method. 3 wt% Ag-ZnO doping was optimized to exhibit a higher β-crystalline phase in PVDF (PAZ3).
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Food Science and Technology, Sari Agricultural Science and Natural Resources University, PO BOX 578, Sari, Mazandaran, Iran.
This study aimed to develop bead-free nanofibers for effective omega-3 encapsulation using optimal mixing ratios of whey protein isolate (WPI)/polyvinyl alcohol (PVA) blends via electrospinning method. Various WPI-PVA ratios (100:0, 90:10, 80:20, 70:30, 60:40, 50:50 v/v) were examined for surface tension, viscosity, and conductivity. SEM images revealed uneven nanofibers with bead at 90:10 and 80:20 ratios, while the 70:30 ratio produced uniform and bead-free nanofibers with an average diameter of 262.
View Article and Find Full Text PDFiScience
January 2025
Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, 266 Xincun Xi road, Zibo 255000, P.R. China.
In recent years, photocatalytic materials with a nanofiber-like morphology have garnered a surge of academic attention due to their distinctive properties, including an expansive specific surface area, a considerable high aspect ratio, a pronounced resistance to agglomeration, superior electron survivability, and robust surface activity. Consequently, the synthesis of photocatalytic nanofiber materials through various methodologies has drawn considerable attention. The electrospinning technique has been established as a prevalent method for fabricating nanofiber-structured materials, owing to its advantageous properties, including the ability for mass production and the assurance of high continuity.
View Article and Find Full Text PDFFront Bioeng Biotechnol
January 2025
Department of Sports Medicine, The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine (FJTCM), Fuzhou, China.
Humerus greater tuberosity (HGT) avulsion fracture is one of the most common types of proximal humerus fractures. The presence of motion and gap lead to the failure of implants, due to the force pulling from the supraspinatus. In this work, electrospinning technology was applied to fabricate PCL-PEG/CS/AST nanofiber with superior biocompatibility and mechanical property.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
Department of Mechanical Engineering, Chang Gung University, Taoyuan, 33302, Taiwan.
Background: In clinical practice, imiquimod is used to treat Human Papillomavirus (HPV)-related lesions, such as condyloma and Cervical Intraepithelial Neoplasia (CIN). Metronidazole is the most commonly prescribed antibiotic for bacterial vaginosis. The study developed biodegradable imiquimod- and metronidazole-loaded nanofibrous mats and assessed their effectiveness for the topical treatment of cervical cancer, a type of HPV-related lesion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!