Kinetic and functional analysis of transient, persistent and resurgent sodium currents in rat cerebellar granule cells in situ: an electrophysiological and modelling study.

J Physiol

Dipartimento di Scienze Fisiologiche-Farmacologiche Cellulari-Molecolari, Sezione di Fisiologia Generale e Biofisica Cellulare, Università degli Studi di Pavia, Via Forlanini 6, 27100 Pavia, Italy.

Published: May 2006

Cerebellar neurones show complex and differentiated mechanisms of action potential generation that have been proposed to depend on peculiar properties of their voltage-dependent Na+ currents. In this study we analysed voltage-dependent Na(+) currents of rat cerebellar granule cells (GCs) by performing whole-cell, patch-clamp experiments in acute rat cerebellar slices. A transient Na+ current (I(NaT)) was always present and had the properties of a typical fast-activating/inactivating Na+ current. In addition to I(NaT), robust persistent (I(NaP)) and resurgent (I(NaR)) Na+ currents were observed. I(NaP) peaked at approximately -40 mV, showed half-maximal activation at approximately -55 mV, and its maximal amplitude was about 1.5% of that of I(NaT). I(NaR) was elicited by repolarizing pulses applied following step depolarizations able to activate/inactivate I(NaT), and showed voltage- and time-dependent activation and voltage-dependent decay kinetics. The conductance underlying I(NaR) showed a bell-shaped voltage dependence, with peak at -35 mV. A significant correlation was found between GC I(NaR) and I(NaT) peak amplitudes; however, GCs expressing I(NaT) of similar size showed marked variability in terms of I(NaR) amplitude, and in a fraction of cells I(NaR) was undetectable. I(NaT), I(NaP) and I(NaR) could be accounted for by a 13-state kinetic scheme comprising closed, open, inactivated and blocked states. Current-clamp experiments carried out to identify possible functional correlates of I(NaP) and/or I(NaR) revealed that in GCs single action potentials were followed by depolarizing afterpotentials (DAPs). In a majority of cells, DAPs showed properties consistent with I(NaR) playing a role in their generation. Computer modelling showed that I(NaR) promotes DAP generation and enhances high-frequency firing, whereas I(NaP) boosts near-threshold firing activity. Our findings suggest that special properties of voltage-dependent Na+ currents provides GCs with mechanisms suitable for shaping activity patterns, with potentially important consequences for cerebellar information transfer and computation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1779707PMC
http://dx.doi.org/10.1113/jphysiol.2006.106682DOI Listing

Publication Analysis

Top Keywords

na+ currents
16
rat cerebellar
12
voltage-dependent na+
12
inar
10
currents rat
8
cerebellar granule
8
granule cells
8
properties voltage-dependent
8
na+ current
8
inat
7

Similar Publications

Design, synthesis and structure-activity relationship of novel 1,2,4-triazolopyrimidin-5-one derivatives targeting GABA and Na1.2 with antiepileptic activity.

Eur J Med Chem

January 2025

State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xiannongtan Street, Xicheng district, Beijing, 100050, China. Electronic address:

A novel class of 7-phenyl-[1,2,4]triazol-5(4H)-one derivatives was designed and synthesized, and their in vivo anticonvulsant activities were evaluated using subcutaneous pentylenetetrazole (Sc-PTZ) and maximal electroshock (MES) tests. Compounds 3u, 4f and 4k exhibited significant anticonvulsant activities in the Sc-PTZ model with ED values of 23.7, 17.

View Article and Find Full Text PDF

High-Performance Oxide Crystal BaTeWO X-ray Detector with High Stability, Low Detection Limit, and Ultralow Dark Current Drift.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China.

X-ray detection materials and devices have received widespread attention due to their irreplaceable role in the medical, industrial, and military fields. In this paper, BaTeWO (BTW) crystal containing lone pairs of electrons with large atomic numbers and high density is reported as a new type of oxide crystal X-ray detection material. The anisotropic X-ray detection performance of the BTW single crystal (SC) is systematically studied.

View Article and Find Full Text PDF

On the substrate turnover rate of NBCe1 and AE1 SLC4 transporters: structure-function considerations.

Front Physiol

January 2025

Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.

A transport protein's turnover rate (TOR) is the maximum rate of substrate translocation under saturating conditions. This parameter represents the number of transporting events per transporter molecule (assuming a single transport site) per second (s). From this standpoint, a transporter's TOR is similar to an enzyme's catalytic constant.

View Article and Find Full Text PDF

Background: Acute-on-chronic liver failure (ACLF) is a life threatening disease. This study seeks to identify factors that contribute to greater financial burden in ACLF.

Methods: In total, 55 patients were included.

View Article and Find Full Text PDF

Potency and quantitative risk assessment are essential for determining safe concentrations for the formulation of potential skin sensitizers into consumer products. Several new approach methodologies (NAMs) for skin sensitization hazard assessment have been developed, validated, and adopted in OECD test guidelines. However, work is ongoing to develop NAMs for predicting skin sensitization potency on a quantitative scale for use as a point of departure (POD) in next-generation risk assessment (NGRA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!