Unlike mammals, chickens generate an immunoglobulin (Ig) repertoire by a developmentally regulated process of intrachromosomal gene conversion, which results in nucleotide substitutions throughout the variable regions of the Ig heavy- and light-chain genes. In contrast to chicken Ig genes, we show in this report that diversity of the rearranged chicken T-cell receptor (TCR) beta-chain gene is generated by junctional heterogeneity, as observed in rearranged mammalian TCR genes. This junctional diversity increases during chicken development as a result of an increasing base-pair addition at the V beta-D beta and D beta-J beta joints (where V, D, and J are the variable, diversity, and joining gene segments). Despite the junctional hypervariability, however, almost all functional V beta-D beta-J beta junctions appear to encode a glycine-containing beta-turn. Such a turn may serve to position the amino acid side chains of a hypervariable TCR beta-chain loop with respect to the antigen-binding groove of the major histocompatibility complex molecule. Consistent with this hypothesis, the germ-line D beta nucleotide sequences of chickens, mice, rabbits, and humans have been highly conserved and encode a glycine in all three reading frames.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC52369PMC
http://dx.doi.org/10.1073/pnas.88.17.7699DOI Listing

Publication Analysis

Top Keywords

chicken t-cell
8
t-cell receptor
8
tcr beta-chain
8
beta-j beta
8
chicken
4
receptor beta-chain
4
diversity
4
beta-chain diversity
4
diversity evolutionarily
4
evolutionarily conserved
4

Similar Publications

Design and development of a novel multi-epitope DNA vaccine candidate against infectious bronchitis virus: an immunoinformatic approach.

Arch Microbiol

March 2025

Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, No. 22, Jinjing Road, Xiqing District, Tianjin, 300392, People's Republic of China.

Avian infectious bronchitis (IB) is one of the major respiratory diseases in poultry. At present, attenuated vaccines are the main commercial vaccines, but they have many defects. We aimed to construct a novel multi-epitope DNA vaccine based on avian infectious bronchitis virus (IBV) S1 and N proteins for the prevention of IBV infection.

View Article and Find Full Text PDF

Marek's Disease Virus (MDV) Meq Oncoprotein Plays Distinct Roles in Tumor Incidence, Distribution, and Size.

Viruses

February 2025

Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.

Marek's disease (MD), characterized by the rapid onset of T-cell lymphomas in chickens, is caused by , an oncogenic alphaherpesvirus commonly known as Marek's disease virus (MDV). MDV encodes a bZIP protein, Meq, which contains a bZIP domain (basic DNA-binding and leucine zipper dimerization domain) at the amino terminus and a transcriptional regulatory domain at the carboxyl end. Meq can transform murine and chicken fibroblasts in vitro and is essential for tumor formation in chickens.

View Article and Find Full Text PDF

Dynamic Immune Response Landscapes of Avian Peripheral Blood Post-Vaccination Against Infectious Bronchitis Virus Infection.

Vaccines (Basel)

January 2025

Division of Avian Infectious Diseases, State Key Laboratory of Animal Disease Control and Prevention, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, China.

: Despite decades of extensive vaccinations against avian infectious bronchitis virus (IBV) infection, outbreaks caused by constantly emerging variants due to genome recombination between different viral strains, including vaccine strains, occur annually worldwide. The development of novel vaccines with favorable safety and effectiveness is required but is hindered by a limited understanding of vaccination against IBV. : Here, we performed a comprehensive analysis of the in vivo dynamics of peripheral blood mononuclear cells (PBMCs) in specific pathogen-free chickens inoculated with the widely used live attenuated IBV vaccine strain H120 at single-cell level, using high-throughput single-cell transcriptome sequencing (scRNA-seq).

View Article and Find Full Text PDF

Introduction: Dendritic cells (DCs) play a crucial role in orchestrating immune responses by bridging innate and adaptive immunity. generation of DCs from mouse and human tissues such as bone marrow and peripheral blood monocytes, has been widely used to study their immunological functions. In chicken, DCs have mainly been derived from bone marrow cell cultures, with limited characterization from blood monocytes.

View Article and Find Full Text PDF

Characterization of TCRβ and IGH Repertoires in the Spleen of Two Chicken Lines with Differential ALV-J Susceptibility Under Normal and Infection Conditions.

Animals (Basel)

January 2025

State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.

This study investigates the immunological factors underlying the differential susceptibility of two chicken strains, E- and M-lines, to avian leukosis virus subgroup J (ALV-J). During the eradication of avian leukosis at a chicken breeder farm in Guangdong, we observed strain-specific differences in susceptibility to ALV-J. Moreover, E-line chickens exhibited a slower antibody response to ALV-J compared to M-line chickens.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!