Chlamydia trachomatis is a human pathogen that causes multiple diseases worldwide. Despite appropriate therapy with existing antichlamydial antibiotics, chronic exacerbated diseases often occur and lead to serious sequelae. Since C. trachomatis has been found to enter a persistent state after exposure to deleterious conditions, the role of persistence in the failure of chlamydial antibiotherapy is questioned. HeLa, THP-1 and U-937 cells were infected with 10(4)C. trachomatis serovar L2 infectious particles. Three days later the infected cells were treated with minimal bactericidal concentrations of doxycycline (DOX), erythromycin (ERY) or tetracycline (TET) for 24 days or 30 days. Antibiotic efficacy was assessed by measuring chlamydial inclusions and infectious particles, by investigating the resumption of chlamydial growth after antibiotic removal and by testing Chlamydia viability using reverse transcriptase polymerase chain reaction targeting unprocessed 16S rRNA, processed 16S rRNA and Omp-1 mRNA. Treatment of infected HeLa cells with the usual antichlamydial antibiotics suppressed chlamydial active growth. The infection remained unapparent. However, 24 days post treatment the bacterium was found to be viable, as proved by continued expression of unprocessed and processed 16S rRNA and Omp-1 mRNA. This inactive unapparent chlamydial state is not infectious, suggesting Chlamydia persistence. Chlamydia trachomatis also developed persistence both in permissive THP-1 and non-permissive U-937 cells. Unlike in HeLa cells, persistent chlamydial infection in THP-1 and U-937 cells was resolved after 30 days of DOX treatment. Of interest, we noticed that only THP-1 and U-937 cells that were persistently infected following their interaction with infected HeLa cells remained capable of transmitting active infection to HeLa cells. These findings suggest that DOX, TET and ERY, usually administered to combat chlamydial diseases, fail to resolve persistent infection occurring during treatment in non-immune HeLa cells. However, in immune THP-1 and U-937 cells, the persistent infection is resolved by therapy with DOX. Epithelial cells could be the reservoir of persistent chlamydial particles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijantimicag.2005.11.010 | DOI Listing |
Anticancer Res
December 2024
Department of Laboratory Medicine, Institute of Science Tokyo, Tokyo, Japan
Background/aim: Extracellular signal-regulated kinases (ERK)1/2 are important regulatory proteins that control cell proliferation and survival, playing a significant role in cancer progression, metastasis, and chemoresistance. This study investigated the effects of ERK1/2 inhibitors on the in vitro growth of acute leukemia cell lines.
Materials And Methods: Three ERK1/2 inhibitors were used: SCH772984, temuterkib (LY3214996), and ulixertinib (BVD-523).
Front Cell Dev Biol
April 2024
Department of Biophysics, Faculty of Science, Palacký University, Olomouc, Czechia.
Extracellular vesicles (EVs) are a type of cytoplasmic vesicles secreted by a variety of cells. EVs originating from cells have been known to participate in cell communication, antigen presentation, immune cell activation, tolerance induction, etc. These EVs can also carry the active form of Nicotinamide Adenine Dinucleotide Phosphate Oxidase Hydrogen (NADPH) oxidase, which is very essential for the production of reactive oxygen species (ROS) and that can then modulate processes such as cell regeneration.
View Article and Find Full Text PDFMethods Mol Biol
March 2024
Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
Delayed-type hypersensitivity (DTH) reactions are among the common reasons for drug withdrawal from clinical use during the post-marketing stage. Several in vivo methods have been developed to test DTH responses in animal models. They include the local lymph node assay (LLNA) and local lymph node proliferation assay (LLNP).
View Article and Find Full Text PDFAnticancer Res
March 2024
Department of Laboratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
Background/aim: Ferroptosis refers to an iron-dependent mechanism of regulated cell death that is attributable to lipid peroxidation. Ferroptosis has been documented as a therapeutic target for various solid cancers; nonetheless, its implication in leukemia remains ambiguous. Therefore, this study aimed at investigating the impact of ferroptosis inducers and inhibitors on in vitro leukemia cell line proliferation.
View Article and Find Full Text PDFInt J Mol Sci
December 2023
Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
Human immune cells possess the ability to react complexly and effectively after contact with microbial virulence factors, including those transported in cell-derived structures of nanometer sizes termed extracellular vesicles (EVs). EVs are produced by organisms of all kingdoms, including fungi pathogenic to humans. In this work, the immunomodulatory properties of EVs produced under oxidative stress conditions or at host concentrations of CO by the fungal pathogen were investigated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!