Ochnaflavone (OC), a naturally occurring biflavonoid with anti-inflammatory activity [S.J. Lee, J.H. Choi, H.W. Chang, S.S. Kang, H.P. Kim. Life Sci. 57(6), 1995, 551-558], was isolated from Lonicera japonica and its effects on inducible nitric oxide synthase (iNOS) gene expression was examined in RAW264.7 cells. U0126, an inhibitor of the extracellular signal-regulated kinase (ERK), significantly down-regulated lipopolysaccharide (LPS)-induced iNOS expression and promoter activity. Transactivation of LPS-stimulated NF-kappaB was inhibited by U0126. These results suggest that the transcription factor NF-kappaB is involved in ERK-mediated iNOS regulation and that activation of the Ras/ERK pathway contributes to the induction of iNOS expression in RAW264.7 cells in response to LPS. OC treatment inhibited the production of nitric oxide in a concentration-dependent manner and also blocked the LPS-induced expression of iNOS. These inhibitory effects were associated with reduced ERK1/2 activity. OC inhibited the phosphorylation of c-Jun NH2-terminal kinase (JNK) and p38 mitogen-activated protein kinase. The findings herein show that the inhibition of LPS-induced ERK1/2 activation may be a contributing factor to the main mechanisms by which OC inhibits RAW264.7. To clarify the mechanistic basis for its ability to inhibit iNOS induction, we examined the effect of OC on the transactivation of the iNOS gene by luciferase reporter activity using the -1588 flanking region. OC potently suppressed reporter gene activity. We also report here, for the first time, that LPS-induced iNOS expression was abolished by OC in RAW264.7 cells through by blocking the inhibition of transcription factor NF-kappaB binding activities. These activities are associated with the down-regulation of inhibitor kappaB (IkappaB) kinase (IKK) activity by OC (6 microM), thus inhibiting LPS-induced phosphorylation as well as the degradation of IkappaBalpha. These findings suggest that the inhibition of LPS-induced NO formation by OC is due to its inhibition of NF-kappaB, which may be the mechanistic basis for the anti-inflammatory effects of OC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.abb.2006.01.016 | DOI Listing |
Eur J Histochem
January 2025
Department of Critical Care Medicine, The Qujing No.1 People's Hospital, Qujing.
Intestinal barrier damage causes an imbalance in the intestinal flora and microbial environment, promoting a variety of gastrointestinal diseases. This study aimed to explore the mechanism by which adipose-derived stem cells (ADSCs) repair intestinal barrier damage. The human colon adenocarcinoma cell line Caco-2 and rats were treated with lipopolysaccharide (LPS) to establish in vitro and in vivo models, respectively, of intestinal barrier damage.
View Article and Find Full Text PDFJ Ethnopharmacol
January 2025
School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510000, China. Electronic address:
Ethnopharmacological Relevancy: Danggui Niantong Decoction (DGNTD) is a traditional Chinese medicine compound formula that has been demonstrated to possess efficacy in the treatment of rheumatoid arthritis (RA) and osteoarthritis (OA), as well as for dispelling moisture and relieving pain. As mentioned before, DGNTD is essential for synovial inflammation in RA. The primary features of the OA synovial membrane are low-grade inflammation, hyperplasia with enhanced fibroblast-like synoviocytes (FLS) proliferation, and fibrosis, which can cause pain and stiffness.
View Article and Find Full Text PDFJ Leukoc Biol
January 2025
Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France.
The gastrointestinal tract is a remarkable example of complex biology, with a constant dialogue between the intestinal epithelium, in close contact with the microbiota, and the immune cells that protect the gut from infection. Organoids have revolutionized our approach to modelling the intestinal cellular compartment and have opened new avenues for unravelling the mechanisms involved in intestinal homeostasis and chronic pathogenesis such as inflammatory bowel disease. To date, few models have been established to explore the role of the colon, which is however the main site of inflammation in ulcerative colitis (UC).
View Article and Find Full Text PDFMar Biotechnol (NY)
January 2025
College of Animal Science and Technology, Northwest A&F University, 22 Xinong Road, Yangling, Xianyang, 712100, Shaanxi, China.
Fucoidan from Apostichopus japonicus (Aj-FUC) has shown anti-inflammatory activity, whereas its mechanism was not explicated. This study investigated the anti-inflammatory potential and mechanism of the fucoidan from green and purple A. japonicus (G-FUC and P-FUC) in lipopolysaccharide (LPS)-treated RAW264.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
Hainan Pharmaceutical Research and Development Science Park, Hainan Medical University, Haikou 571157 China; Research Center for Drug Safety Evaluation of Hainan Province, Hainan Medical University, Haikou 571199 China. Electronic address:
Acute pulmonary inflammation is a severe lower respiratory tract infection. Sinensetin (SIN), a polymethoxyflavone with strong anti-inflammatory properties, is known to ameliorate LPS-induced acute inflammatory lung injury, but its molecular mechanisms are not fully understood. This study aimed to provide insight into the pharmacological mechanisms of SIN in attenuating acute pulmonary inflammation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!