The effect of a bufodienolide (monohydroxy-14,15-epoxy-20,22-dienolide glycoside) purified from toad skin was compared with that of ouabain on 3H-noradrenaline release and on the tension of rabbit pulmonary arterial strips. This compound exerted an ouabain-like activity. The neuronal effects of this bufodienolide derivative on squid axon were also studied and compared with those of ouabain. Both compounds enhanced the resting and stimulation-evoked (2 Hz, 360 shocks) release of 3H-noradrenaline. Moreover, in the presence of either this bufodienolide or ouabain, the tension of the rabbit artery increased gradually, and the contraction evoked by electrical stimulation was potentiated. Both compounds enhanced, in a prazosin-sensitive way, smooth muscle responses to noradrenaline and to electrical stimulation. In higher concentrations, they contracted smooth muscle cells of pulmonary artery, an action which was insensitive to prazosin. The bufodienolide was about 8 times more active in inhibition of 22Na efflux than was ouabain, but did not affect Ca efflux, which is not sensitive to ouabain. It is therefore concluded that compounds with an inhibitory effect on Na+,K(+)-ATPase are able to affect chemical neurotransmission of blood vessels in such a way that in lower concentrations they potentiate the release of noradrenaline, and in higher concentrations they contract directly the smooth muscle. These findings indicate that such compounds if they are present in the circulation might be involved in the physiological regulation of blood pressure or in the genesis of hypertension.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0168-0102(91)90081-9 | DOI Listing |
Cardiol Rev
January 2025
Department of Internal Medicine, Milton S Hershey Medical Center, Hershey, PA.
Moyamoya disease (MMD) is a vascular disorder characterized by steno-occlusive alterations in cerebral arteries, often resulting in ischemic or hemorrhagic events predominantly affecting the female population and more common in Asian populations. Despite its predominantly neurological manifestations, recent research suggests a potential association between MMD and cardiovascular diseases (CVDs). MMD involves various genetic and environmental factors, with mutations in the RNF213 gene being strongly implicated in disease susceptibility, with histopathological findings revealing intimal lesions and smooth muscle proliferation, contributing to vascular occlusion as well as dysregulation of circulating endothelial and smooth muscle progenitor cells further complicating MMD's pathogenesis.
View Article and Find Full Text PDFRegen Ther
March 2025
Pediatric Urology and Regenerative Medicine Research Center, Gene Cell and Tissue Research Institute Children Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
Tissue engineering has been considered a potential choice for urinary system reconstruction. Here, we aim to a broad spectrum of employed stem cells in bladder regeneration by performing a comprehensive systematic review. In January 2024, we searched Scopus, PubMed, and Embase databases for studies that tried bladder regeneration by tissue engineering using stem cells.
View Article and Find Full Text PDFJVS Vasc Sci
December 2024
Department of Cardiovascular Science, Lewis Katz School of Medicine at Temple University, Philadelphia, PA.
Treatment with an inhibitor of glucose use via glucose transporters (GLUT) has been shown to attenuate experimental abdominal aortic aneurysm (AAA) development in mice. Vascular smooth muscle cell (VSMC) signaling seems to be essential for angiotensin II (Ang II)-induced AAA in mice. Accordingly, we have tested a hypothesis that VSMC silencing of the major GLUT, GLUT1, prevents AAA development and rupture in mice treated with Ang II plus β-aminopropionitrile.
View Article and Find Full Text PDFEClinicalMedicine
January 2025
Department of Mathematics, University of Auckland, Auckland, New Zealand.
With the impending 'retirement' of bronchial thermoplasty (BT) for the treatment of patients with asthma, there is much to learn from this real-world experiment that will help us develop more effective future therapies with the same primary target i.e., airway smooth muscle (ASM) remodelling.
View Article and Find Full Text PDFNat Cardiovasc Res
January 2025
Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
Loss-of-function mutations in NOTCH1 were previously linked to thoracic aortopathy, a condition for which non-surgical treatment options are limited. Based on clinical proteome analysis, we hypothesized that mitochondrial fusion and biogenesis in aortic smooth muscle cells (SMCs) are crucial for regulating the progression of NOTCH1-related aortopathy. Here we demonstrate that SMC-specific Notch1 knockout mice develop aortic pathology, including stiffening, dilation and focal dissection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!